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Abstract. The Hunter–Saxton equation determines a flow of conservative solutions taking
values in the space H1(R+). However, the solution typically includes finite time gradient
blowups, which make the solution flow not continuous w.r.t. the natural H1 distance. The aim
of this paper is to first study the generic properties of conservative solutions of some initial
boundary value problems to the Hunter–Saxton type equations. Then using these properties,
we give a new way to construct a Finsler type metric which renders the flow uniformly Lipschitz
continuous on bounded subsets of H1(R+).
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1. Introduction

In this paper, we study the one and two–component Hunter–Saxton equations, in the region
(t, x) ∈ R+ × R+. More precisely, the two–component Hunter–Saxton equations which can be
used to model the propagation of weakly nonlinear orientation waves in a massive nematic liquid
crystal, are given as follows ut + uux =

1

2

ˆ x

0
(u2
z + ρ2)(z) dz,

ρt + (uρ)x = 0,
(1.1)

for (t, x) ∈ R+×R+. Here the variable u = u(t, x) describes the horizontal velocity of the fluid,
ρ = ρ(t, x) describes the horizontal deviation of the surface from equilibrium.

When ρ ≡ 0, the above system becomes the one–component Hunter–Saxton equation

ut + uux =
1

2

ˆ x

0
u2
z(z) dz, (1.2)

which is an asymptotic equation of the variational wave equation used to model nematic liquid
crystal [1, 11].

The Hunter–Saxton equation (1.2) was first derived in [11] as an asymptotic equation of
the variational wave equation, which was considered in [1, 2, 3, 4, 8, 21, 22], for the nematic
liquid crystals. The global existences of weak conservative and dissipative solutions of (1.2)
were first proved by Hunter and Zheng in [12, 13] on the initial value problem, by studying the
self-similar solutions, then were treated by several other methods including the Young measure
method by Zhang and Zheng in [20], and the characteristic method by Bressan and Constantin
[5] and Bressan, Zhang and Zheng [7] on the initial value or initial boundary value problem.
The uniqueness of conservative solution can be found in [7]. Especially, in [5, 7], by introducing
some “energy related” variables, the equation (1.2) can be written into a new semi-linear system
under some characteristic coordinates. Furthermore, by studying this semi-linear system, one
can prove the global existence of H1 solution for the original system.

However, due to the energy concentration when the finite time gradient blowup happens,
the solution flow of (1.2) is in general not Lipschitz continuous with respect to the natural
H1 distance. To obtain the Lipschitz property, one needs to introduce some new metric. One
natural choice is to use an optimal transport metric measuring the cost in transporting from one
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solution to another one. Before this paper, there were two major ways available in constructing
such a metric for the initial value problem of the one-component Hunter-Saxton equation. First,
in [5], the Lipschitz metric was constructed by optimizing the direct transportation from one
dissipative solution to another one. Secondly in [6], Bressan, Holden and Raynaud established
a geodesic distance for energy conservative solutions,, where their construction relies on the
analysis of the semi-linear system, used also in the existence proof, on energy related variables
under the characteristic coordinates.

The two–component Hunter–Saxton system is a generalization of the Hunter–Saxton equa-
tion. It is also a special case of the Gurevich-Zybin system modelling the dynamics of non-
dissipative dark matter [16]. Its local well–posedness, global existence and blow–up phenomena
were discussed recently in [18]. Moreover, Munsch [19] proved that there exist global dissipative
solutions to the two–component Hunter–Saxton system on R. In [15], Nordli established the
existence of conservative solutions and the Lipschitz continuous dependence of the solutions
with respect to the initial data using similar method as in [6].

In this paper, we provide another way to establish a Finsler type distance which renders
the conservative solution flows of (1.1) and (1.2) uniformly Lipschitz continuous on bounded
subsets of H1(R+). We first define the metric for smooth solutions, purely using functions on
the original (t, x)-coordinates, then prove the uniform Lipschitz continuity of the flow until the
blowup time. On the other hand, we establish a generic regularity result, roughly speaking,
which can be understood as that piecewise smooth solutions with only generic singularities
are dense in the whole solution set. Using this result, we could extend the metric for smooth
solutions to a metric for general weak solutions in H1(R+), where some extra efforts need to be
done in order to extending the Lipschitz properties from smooth solutions to piecewise smooth
solutions with only generic singularities. This framework was first established by Bressan and
Chen in [2, 3] for the variational wave equation.

Actually, the generic regularity results in this paper are new. These results give us a thorough
understand on the properties of generic singularities, which are among the most physically rele-
vant singularities, for systems (1.1) and (1.2). As stated before, some geodesic Lipschitz metrics
for conservative solutions, using variables under new coordinates instead of (t, x) coordinate,
were established in [5, 15]. One reason why we still wish to construct the Lipschitz metric
through our method, under the help of the generic regularity results, is because our method
which works mainly on the original (t, x)-coordinates can provide readers a new intuitive way
to understand the construction of metrics through other ways. Especially, we expect that the
construction of the metrics in this paper, especially the metrics for the smooth cases (in Subsec-
tions 2.3.1 and 3.3.1), can be easily understood even by readers in a broader field. In this paper,
we study the initial boundary value problems, instead of the initial value problems considered
by [5, 15].

In this paper, we deal with the Hunter–Saxton equation (1.2) and the two–component Hunter–
Saxton equations (1.1) in Sections 2 and 3, respectively. First we review the existence and
uniqueness of conservative solutions to these two type equations in Subsections 2.1 and 3.1,
respectively.

Next, in Subsections 2.2 and 3.2, we consider the generic regularity of conservative solu-
tions of these two types of equations, respectively. As mentioned before, the Hunter–Saxton
equation is a special case of the two–component equations. From this point of view, the two–
component Hunter–Saxton equations should inherit all the singular behavior from the Hunter–
Saxton equation. However, we reveal that these two type equations have quite different generic
singularity behaviors. We will see from Theorem 2.2 and Corollary 3.1 that the solutions of the
Hunter–Saxton equation may form singularity in finitely many piecewise C2 curves in the domain
[0, T ]×R, for any T > 0, while the singularity of the two–component Hunter–Saxton equations
generically only occurs at finitely many isolated points within the same domain. Moreover,
when the density ρ is positive, there is an upper bound of |ux|, which means that there is no
blow–up phenomenon in the domain when ρ > 0 for (1.1). To prove this generic regularity
result, we use the method first provided in a recent paper [2] for the variational wave equation
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and then used for one and two-component Camassa-Holm equations in [14], where one of the
main ideas is to use the Thom’s Transversality Theorem.

At last, we will study Lipschitz continuous dependence of solutions of the initial boundary
value problem by constructing a Lipschitz metric on two types of equations in Subsections 2.3
and 3.3, respectively. More specifically, In 2.3.1 and 3.3.1, we construct a Finsler norm on
tangent vector and show how the norm evolves in time for smooth solutions to two systems.
Then we extend the metric to piecewise smooth solutions with only generic singularities in 2.3.2
and 3.3.2. Finally, in 2.3.3 and 3.3.3, we extend the metric to general weak solutions to two
systems by the “dense” results obtained in Subsections 2.2 and 3.2, respectively.

2. The Hunter–Saxton equation

In this section, we first study the generic regularity of conservative solutions to the Hunter–
Saxton equation (1.1). Based on this result, we will construct a Finsler distance which renders
Lipschitz continuous the unique flow generated by (1.2), c.f. [7]. To this end, we start from the
existence and uniqueness result established in [7].

2.1. Preliminaries. We consider the Hunter–Saxton equation

ut + uux =
1

2

ˆ x

0
u2
z(z) dz, (2.1)

with initial–boundary conditions

u(0, x) = u0(x), u(t, 0) = 0, (2.2)

and a compatibility conditions
u0(0) = 0, u′0(0) = 0. (2.3)

For smooth solution, formally differentiating equation (2.1) with respect to the spatial variable
x, we obtain

uxt + (uux)x =
1

2
u2
x. (2.4)

One can easily check that every smooth solution satisfies a conservation law, namely,

(u2
x)t + (uu2

x)x = 0. (2.5)

Integrating (2.5) with respect to x, we see that

E(t) :=

ˆ ∞
0

u2
x(t, x) dx = E0 (2.6)

is constant in time.

Definition 2.1. A function u = u(t, x) defined on [0, T ] × R+ is a solution of the initial–
boundary value problem (2.1)–(2.3) if the following holds.

(i) The function u is locally Hölder continuous with respect to both variables t, x. The initial
and boundary conditions (2.2) and (2.3) hold pointwise. For each time t ∈ [0, T ], the map
x 7→ u(t, x) is absolutely continuous with ux(t, ·) ∈ L2(R+).

(ii) For any M > 0, consider the restriction of u to the interval x ∈ [0,M ]. Then the
map t 7→ u(t, ·) ∈ L2([0,M ]) is absolutely continuous and satisfies the equation d

dtu(t, ·) =

−uux + 1
2

´ x
0 u

2
z(z) dz for a.e. t ∈ [0, T ]. Here equality is understood in the sense of functions

in L2([0,M ]).

Now, we review the existence and uniqueness result to the Hunter–Saxton equation, c.f.[7, 10].

Theorem 2.1. ([7]) For any initial data u0 ∈ H1(R+), the initial–boundary value problem
(2.1)–(2.3) admits a global unique conservative solution u = u(t, x). More precisely, there exists
a family of Radon measures {µ(t); t ∈ R+}, depending continuously on time with respect to the
topology of weak convergence of measures, such that the following properties hold.

(i) The functions u provides a solution of (2.1)–(2.3) in the sense of Definition 2.1.
(ii) There exists a null set A ⊂ R with meas(A)=0 such that for every t /∈ A the measure µ(t)

is absolutely continuous and has density u2
x(t, ·) with respect to Lebesgue measure.
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(iii) The family {µ(t); t ∈ R+} provides a measure–valued solution $ = u2
x to the linear

transport equation with source $t + (u$)x = 0.

Remark 2.1. (1) For smooth solution, along the characteristic dx(t)
dt = u(t, x(t)), we know from

(2.1) that the value of the solution u is

u(t, x(t)) = u0(x) +
1

2

ˆ t

0

ˆ x

0
u2
z(z) dz dt.

More precisely, for later references, one has the bound

‖u(x)‖L∞ ≤ ‖u0(x)‖L∞ +
t

2
E0.

(2) One can find a global existence result to a more general scalar equation in [10].

2.2. Generic regularity of solutions to the Hunter–Saxton equation. Now, we review
some basic setup used in [10]. We first introduce an energy variable ξ ∈ R+ by setting

ξ :=

ˆ ȳ(ξ)

0
(1 + u2

x(0, x′)) dx′,

where t 7→ y(t, ξ) is the characteristic starting at ȳ(ξ), so that

dy(t, ξ)

dt
= u(t, y(t, ξ)), y(0, ξ) = ȳ(ξ),

where we write u(t, ξ) := u(t, y(t, ξ)). Then we define two dependent variables r := r(t, ξ) and
q := q(t, ξ) as

r = 2 arctanux and q = (1 + u2
x) · ∂y

∂ξ
,

then one obtains a semi–linear system
uξ(t, ξ) = 1

2q sin r,

rt(t, ξ) = − sin2 r
2 ,

qt(t, ξ) = 1
2q sin r.

(2.7)

Furthermore, if we set

S := ut + uux,

we have another semi–linear system
ut(t, ξ) = S,

Sξ(t, ξ) = 1
2q sin2 r

2 ,

rt(t, ξ) = − sin2 r
2 ,

qt(t, ξ) = 1
2q sin r.

(2.8)

Here the initial data on (0, ξ) with ξ ≥ 0 are
u(0, ξ) = u0(x(0, ξ)),

r(0, ξ) = 2 arctanu0,x(x(0, ξ)),

q(0, ξ) = 1.

(2.9)

The boundary conditions on (t, 0) with t ≥ 0 are
u(t, 0) = 0,

r(t, 0) = 0,

q(t, 0) = 1.

(2.10)

It suffices to express the solution u(t, ξ) in terms of the original variables (t, x), then we have,
according to the results in [10],
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Lemma 2.1. Let (x, u, r, q)(t, ξ) be the solution to the system (2.8)–(2.10) with q > 0. Then
the set of points

{(t, x(t, ξ), u(t, ξ)); (t, ξ) ∈ R+ × R+} (2.11)

is the graph of a conservative solution to the Hunter–Saxton equation (2.1).

Now, we begin with the construction of perturbed solutions.

Lemma 2.2. Let (u, r, q) be a smooth solution of the semilinear system (2.8) and given a point
(t0, ξ0) ∈ R+ × R+. If (r, rξ, rξξ)(t0, ξ0) = (π, 0, 0), then there exists a 3–parameter family of

smooth solutions (uϑ, rϑ, qϑ) of (2.8), depending smoothy on ϑ with ϑ in a small enough open
ball centered at the origin in R3, such that the following holds.

(i) when ϑ = 0 ∈ R3, one recovers the original solution, namely (u0, r0, q0) = (u, r, q).
(ii) At the point (t0, ξ0), when ϑ = 0, one has

rank Dϑ(rϑ, rϑξ , r
ϑ
ξξ) = 3. (2.12)

Proof. Let (u, r, q) be a smooth solution of the semilinear system (2.8). Now, we construct
families of solutions (uϑ, rϑ, qϑ) to system (2.8) with perturbations on the initial data as

uϑ(0, ξ) = u(0, ξ) +
∑

i=1,2,3

ϑiUi(0, ξ),

rϑ(0, ξ) = r(0, ξ) +
∑

i=1,2,3

ϑiRi(0, ξ),

qϑ(0, ξ) = q(0, ξ) +
∑

i=1,2,3

ϑiQi(0, ξ),

(2.13)

respectively, for some suitable functions Ui(0, ξ), Ri(0, ξ), Qi(0, ξ) ∈ C∞c (R+). The boundary
conditions are always 

uϑ(t, 0) = 0,

rϑ(t, 0) = 0,

qϑ(t, 0) = 1.

(2.14)

We note that in any bounded time interval, the singularity, that is r = π, can only happen in
a region uniformly away from the t-axis.

One has 
∂
∂ξu

ϑ = fϑ1 = 1
2q
ϑ sin rϑ,

∂
∂tr

ϑ = fϑ2 = − sin2 rϑ

2 ,
∂
∂tq

ϑ = fϑ3 = 1
2q
ϑ sin rϑ,

(2.15)

where fϑ1 , f
ϑ
1 , f

ϑ
3 are the perturbations of the right hand side of (2.7)1, (2.7)2 and (2.7)3. In light

of [10], for each ϑ ∈ R3, Ui(0, ξ), Ri(0, ξ), Qi(0, ξ) ∈ C∞c (R+), we obtain a unique solution

uϑ(t, ξ) = u(t, ξ) +
∑

i=1,2,3

ϑiUi(t, ξ),

rϑ(t, ξ) = r(t, ξ) +
∑

i=1,2,3

ϑiRi(t, ξ),

qϑ(t, ξ) = q(t, ξ) +
∑

i=1,2,3

ϑiQi(t, ξ),

of the semilinear system (2.15).
On the other hand, taking derivatives to the equation of r in (2.8), we have

∂

∂t
rϑξ = −1

2
rϑξ sin r =: fϑ4 , (2.16)

and
∂

∂t
rϑξξ = −1

2
(rϑξξ sin rϑ + (rϑξ )2 cos rϑ) =: fϑ5 . (2.17)
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Thus, the equations (2.8)3, (2.16) and (2.17) form a complete system. Then consider the ODE
system

∂

∂t

 rϑ

rϑξ
rϑξξ

 =

 fϑ2
fϑ4
fϑ5

 .

Then it is easy to check that the terms on right hand side of (2.15)2, (2.16) and (2.17) are
Lipschitz continuous, so we can choose suitable perturbation Ri, i = 1, 2, 3, such that at the
point (t0, ξ0) and ϑ = 0, the Jacobian matrix has full rank, that is,

rank Dϑ

 rϑ

rϑξ
rϑξξ

 = 3. (2.18)

Let’s give a little more details. In fact, it is easy to get that

∂

∂t

 Ri
(Ri)ξ
(Ri)ξξ

 =

 −1
2 sin r 0 0
∗ −1

2 sin r 0
∗ ∗ −1

2 sin r

 Ri
(Ri)ξ
(Ri)ξξ


where the matrix in the right hand side is a lower triangular matrix and ∗ denotes any number.
Then we only have to choose Ri such that at (t0, ξ0), R1 = O(1); R2 = 0 and (R2)ξ = O(1);
R3 = 0, (R3)ξ = 0 and (R3)ξξ = O(1), then we can prove (2.18). This completes the proof of
Lemma 2.2. �

To prove the main theorem in this subsection, we first have the following lemma following
from Lemma 2.2, which shows for almost all of the solutions the level sets {(t, ξ); r(t, ξ) = π}
satisfies a generic property. The proof is based on Lemma 2.2 and the transversality argument,
which is similar to those given in [2, 14]. We omit it here for brevity.

Lemma 2.3. Let a compact domain

Ω := {(t, ξ); 0 ≤ t ≤ T, 0 ≤ ξ ≤M},
and define S be the family of all C2 solutions (u, r, q) to the semilinear system (2.8), with q > 0
for all (t, ξ) ∈ [0, T ] × R+. Moreover, define S ′ ⊂ S be the subfamily of all solutions (u, r, q),
such that for (t, ξ) ∈ Ω, the value

(r, rξ, rξξ) = (π, 0, 0) (2.19)

cannot be attained. Then S ′ is a relatively open and dense subset of S, in the topology induced
by C2(Ω).

Now, we study the structure of solutions. Roughly speaking, we prove that, for generic
smooth initial data, the solution is piecewise smooth. Its gradient ux blows up along finitely
many smooth curves in the t–x plane. The main result reads as

Theorem 2.2 (Generic regularity). Let T > 0 be given, then there exists an open dense set of
initial data

D ⊂
(
C3(R+) ∩H1(R+)

)
,

such that, for u0 ∈ D, the solution u = u(t, x) of (2.1) is twice continuously differentiable in
the complement of finitely many characteristic curves, within the domain [0, T ]× R+.

Proof. For the future use, we define the space

M := C3(R+) ∩H1(R+),

with norm
‖u0‖M := ‖u0‖C3 + ‖u0‖H1 .

Let the initial data û0 ∈M be given and set the open ball

Bδ := {u0 ∈M; ‖u0 − û0‖M < δ}.
Now, we prove our result by six steps.
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1. Since u0 ∈M, by the definition of the space M, we have

u0(x)→ 0 and u0,x(x)→ 0, as x→∞.
Hence, there exists h > 0 sufficiently large, such that u0(x), u0,x(x) being uniformly bounded for
all x ≥ h. By a standard comparison argument, we deduce ux(t, x) remains uniformly bounded
on a domain of the form {(t, x); t ∈ [0, T ], x ≥ h+ T‖u‖L∞} . This means that the singularity
of u(t, x) in the set [0, T ]× R+ only occur on the compact set

N := [0, T ]× [0, h+ T‖u‖L∞ ].

Next, for any u0 ∈ Bδ, denote Λ be the map of (t, ξ) 7→ Λ(t, ξ) := (t, x(t, ξ)), and let Ω be
a domain as in Lemma 2.3. Then we can obtain the inclusion N ⊂ Λ(Ω) by choosing M large
enough and by possibly shrinking the radius δ.

More specifically, we define the subset D̃ ⊂ Bδ as: u0 ∈ D̃ if u0 ∈ Bδ and for the corresponding
solution (u, r, q) of (2.8), the value (2.19) is never attained for any (t, ξ) such that (t, x(t, ξ)) ∈ N .
Later in this proof, we will validate D̃ is an open dense set.

2. To begin with, we claim the set D̃ is open, in the topology of C3. Indeed, consider a
sequence of initial data (uν0)ν≥1 such that the sequence converges to u0, with uν0 /∈ D̃. By

the definition of D̃, there exist points (tν , ξν) such that the corresponding solutions (uν , rν , qν)
satisfy

(rν , rνξ , r
ν
ξξ)(t

ν , ξν) = (π, 0, 0), (tν , xν(tν , ξν)) ∈ N ,
for all ν ≥ 1. Recall that the domain N is compact, we can choose a subsequence, denote still
by (tν , ξν) at which (tν , ξν)→ (t̄, ξ̄) for some point (t̄, ξ̄). By continuity,

(r, rξ, rξξ)(t̄, ξ̄) = (π, 0, 0), (t, x(t̄, ξ̄)) ∈ N ,

which implies u0 /∈ D̃. This means D̃ is an open set.
3. Now, we prove the set D̃ is dense in Bδ. Let u0 ∈ Bδ be given, by a small perturbation,

we can assume that u0 ∈ C∞. By virtue of Lemma 2.3, we can construct a sequence of solutions
(uν , rν , qν) of (2.8), such that,

(i) for every ν ≥ 1, (t, ξ) ∈ Ω, the value in (2.19) is never attained.
(ii) The Ck, k ≥ 1 norm of the difference satisfies

lim
ν→∞

‖(uν − u, rν − r, qν − q, xν − x)‖Ck(I) = 0,

for every bounded set I ⊂ [0, T ] × R+. Thus, for t = 0, the corresponding sequence of initial
value satisfies

lim
ν→∞

‖uν0 − u0‖Ck([a,b]) = 0, (2.20)

for every bounded set [a, b] ⊂ R+.
Introduce a cutoff function ψ(x) ∈ C∞c , such that{

ψ(x) = 1, if 0 ≤ x ≤ l,
ψ(x) = 0, if x ≥ l + 1,

where l � h + T‖u‖L∞ is large enough. Then for every ν ≥ 1, consider the following initial
data

ũν0 := ψuν0 + (1− ψ)u0.

With the help of (2.20), we can easily get

lim
ν→∞

‖ũν0 − u0‖M = 0.

Now, we choose l > 0 sufficiently large, such that for any (t, x) ∈ N , we have

ũν(t, x) = uν(t, x).

Notice that ũν(t, x) is C2 on the outer domain {(t, x); t ∈ [0, T ], x ≥ h + T‖u‖L∞}. Thus, for

every ν ≥ 1 sufficiently large, ũν0 ∈ D̃. This concludes that D̃ is dense in Bδ.

4. At last, we need to show that for every initial data u0 ∈ D̃, the corresponding solution
u(t, x) of (2.1) is piecewise C2 on the domain [0, T ] × R+. Toward this goal, we recall that u
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is C2 on the outer domain {(t, x); t ∈ [0, T ], x ≥ h + T‖u‖L∞}, so it remains to consider the
singularity of u on the inner domain N .

According to step 1, every point in N is contained in the image of the domain Ω. Hence, for
every point (t0, ξ0) ∈ Ω, we have two cases.

case I. r(t0, ξ0) 6= π. From the coordinate change xξ = q cos2 r
2 , we know the map (t, ξ) 7→

(t, x) is locally invertible in a neighborhood of (t0, ξ0). Therefore, the function u is C2 in a
neighborhood of (t0, x(t0, ξ0)).

case II. r(t0, ξ0) = π. By the equation of r in (2.7), we have rt(t0, ξ0) 6= 0.
5. By continuity, there exists η > 0, such that the value in (2.19) is never attained in the

open neighborhood

Ω′ := {(t, ξ); 0 ≤ t ≤ T, 0 ≤ ξ ≤M + η}.

Thanks to the implicit function theorem, we derive that the set

Sr := {(t, ξ) ∈ Ω′; r(t, ξ) = π}

is 1–dimensional embedded manifold of class C2.
Now, we claim that the number of connected components of Sr that intersect the compact

set Ω is finite. Assume, by contradiction, that P1, P2, · · · is a sequence of points in Sr ∩ Ω
belonging to distinct components. Thus, we can choose a subsequence Pi, such that Pi → P̄ for
some P̄ ∈ Sr ∩ Ω. By assumption, (rt, rξ)(P̄ ) 6= (0, 0).

Hence, by the implicit function theorem, there is a neighborhood U of P̄ such that γ := Sr∩U
is a connected C2 curve. Thus, Pi on all i large enough, providing a contradiction.

6. To complete the proof, we need to study in more detail the image of the singular set Sr,
since the set of points (t, x) where u is singular coincides with the image of the set Sr under
the C2 map (t, ξ) 7→ Λ(t, ξ) = (t, x(t, ξ)).

By the argument in step 5, inside the compact set Ω, there are only finite many points where
r = π, rξ = 0, rt 6= 0, say Pi = (ti, ξi), i = 1, · · · ,m.

From the analysis in step 5, the set Sr\{P1, · · · , Pm} has finitely many connected components
which intersect Ω. Consider any one of these components. This is a connected curve, say γj ,
such that r = π, rξ 6= 0 for any (t, ξ) ∈ γj . Thus, this curve can be expressed in the form

γj = {(t, ξ); ξ = φj(t), aj < t < bj},

for a suitable function φj .
At this stage, we claim that the image Λ(γj) is a C2 curve in the t–x plane. Indeed, it suffices

to show that, on the open interval (aj , bj), the differential of the map t 7→ (t, x(t, φj(t))) does
not vanish. This is true, because

d

dt
x(t, φj(t)) = 1 + xξφ

′
j = 1 > 0,

since xξ = q cos2 r
2 = 0 when r = π. Hence, the singular set Λ(Sr) is thus the union of the

finitely points pi = Λ(Pi), i = 1, · · · ,m, together with finitely many C2–curve Λ(γj). This
completes the proof of Theorem 2.2. �

In the next subsection, we will construct a distance which renders Lipschitz continuous the
semigroup of conservative solutions of (2.1). Toward this goal, one needs a dense set of piecewise
smooth paths of solutions, whose weighted length can be controlled in time. Hence, we now
study families of conservative solutions uθ = u(t, x, θ) of (2.1) with initial data u(0, x, θ) =
u0(x, θ) =: uθ0(x), depending smoothly on an additional parameter θ ∈ [0, 1]. More precisely,
these paths of initial data will lie in the space

X1 := C3
(
R+ × [0, 1]

)
∩ L∞

(
[0, 1];H1(R+)

)
.

Now, we have the following generic regularity for the 1–parameter family of solution. The
proof is similar to [2], we omit it here for brevity.
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Theorem 2.3. Let T > 0 be given, then for any 1–parameter family of initial data ũθ0 ∈ X1

and any ε > 0, there exists a perturbed family (x, θ) 7→ uθ0(x) such that

‖uθ0 − ũθ0‖X1 < ε,

and moreover, for all except at most finitely many θ ∈ [0, 1], the conservative solution uθ =
u(t, x, θ) of (2.1) is smooth in the complement of finitely many points and finitely many C2

curves in the domain [0, T ]× R+.

2.3. Lipschitz metric for the Hunter–Saxton equation. In this subsection, we establish
a new metric which renders Lipschitz continuous on bounded subsets of H1(R+). Our distance
will be determined by the minimum cost to transport an energy measure from one solution to
the other. To define a suitable transportation distance between two solutions, we start from
the case of smooth solutions of (2.1).

2.3.1. The norm of tangent vector for smooth solutions. Now, we introduce a Finsler norm on
the solution flow and its tangent vector. Then by some elaborate estimates, we obtain the key
estimate describing how the norm grows in time. To this end, let u(x) be a smooth solution to
(2.1) and consider a family of perturbed solutions of the form

uε(x) = u(x) + εv(x) + o(ε). (2.21)

In terms of (2.1), the first order perturbation v must satisfy the equations

vt + uvx + vux =

ˆ x

0
(uzvz)(z) dz, (2.22)

and

vxt + uvxx + uxvx + vuxx = 0. (2.23)

To measure the cost of transporting u to uε on the x-u plane, we notice that the tangent flow
v only measures the vertical displacement between two solutions. In order to giving enough
freedom of this planar transport, we also need to add a quantity, named as w, to measure the
(horizontal) shift on x as

xε := x+ εw(x) + o(ε). (2.24)

Here w(t, x) can be obtained by propagating along characteristics the shifts w0(x) as the initial
data. That is, we require that when x(t) is a characteristic starting from x0 then xε(t) is also
a characteristic starting from xε0, so

d

dt
xε(t) = uε(xε) when

d

dt
x(t) = u(x).

Then, using (2.21), (2.24) and taking limit ε→ 0, we have

wt + uwx = v + uxw. (2.25)

Thus, we can introduce a Finsler norm for the tangent vector as

‖v‖u := inf
w∈A
‖(w, v)‖u, (2.26)

where

A = {solutions w(t, x) of (2.25) with smooth initial data w0(x)}.
Note u is always smooth in this section, hence w solved in (2.25). The norm is defined as

‖(w, v)‖u

=

ˆ ∞
0
{|w|(e−x + u2

x) + |v + uxw|(e−x + u2
x) + |2ux(vx + uxxw) + u2

xwx|} dx

=: I1 + I2 + I3.

(2.27)
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Remark 2.2. We insert e−x, instead of a constant, in the integrands of I1 and I2, because the
integrals are on an infinite interval. If u is in L1, then one could use a constant instead, with
w0 also assumed to be in L1.

A norm very similar to (2.27) for smooth solutions of Hunter-Saxton equation (2.1) was pro-
posed in A. Bressan’s unpublished research note. We collect this norm here for the completeness
of this paper.

The explanation of each integrand in (2.27) is given in the following.
(a) For I1, it can be interpreted as the cost for transporting the base measure with density

e−x + u2
x from the point x to the point x+ εw(x).

(b) I2 accounts for the change in u times the density e−x + u2
x of the base measure. Indeed,

the change in u can be estimated as

uε(x+ εw(x))− u(x)

ε
≈ v(x) + ux(x)w(x).

(c) I3 accounts for the change in the base measure with density u2
x. More precisely,

lim
ε→0

(uεx)2(x+ εw(x)) dxε − u2
x(x) dx

ε

= lim
ε→0

(
(uεx)2(x+ εw(x))− u2

x(x)
)
dxε − u2

x(x)
(
dxε − dx

)
ε

=
(

2ux(vx + uxxw)(x) + u2
x(x)wx(x)

)
dx.

Our main goal of this subsection is to estimate how the norm defined in (2.26) changes in
time.

Theorem 2.4. Let u = u(t, x) be a smooth solution to (2.1)–(2.3), and assume that the first
order perturbation v satisfies the corresponding linear equation (2.22). Then for any τ ∈ [0, T ],
we have

‖v(τ)‖u(τ) ≤ eCτ‖v(0)‖u0 , (2.28)

for some constant C > 0 depending only on T and ‖u0(x)‖H1.

Proof. It suffices to show that

d

dt
‖(w, v)(t)‖u(t) ≤ C‖(w, v)(t)‖u(t), (2.29)

for any v and w satisfying (2.22) and (2.25). Here and in this subsection, C > 0 is a generic
constant only depending on T and ‖u0(x)‖H1 which may vary in different estimates.

To prove (2.29), first, notice that for any L1 smooth function f , we have

d

dt

ˆ
R
|f | dx =

ˆ
R

(|f |)t + (u|f |)x dx =

ˆ
R

sign(f)[ft + (uf)x] dx ≤
ˆ
R
|ft + (uf)x| dx.

Now, we devote to the estimate of ft + (uf)x, with f being w(e−x + u2
x), (v + uxw)(e−x + u2

x)
and 2ux(vx + uxxw) + u2

xwx, respectively.
1. We first treat the time derivative of I1, It follows from (2.5) and (2.25) that(

w(e−x + u2
x)
)
t
+
(
uw(e−x + u2

x)
)
x

=(wt + uwx)(e−x + u2
x) + w

[
(e−x + u2

x)t + (u(e−x + u2
x))x

]
=(v + uxw)(e−x + u2

x) + w(uxe
−x − ue−x).

This together with Remark 2.1 yields

d

dt

ˆ ∞
0
|w|(e−x + u2

x) dx ≤
ˆ ∞

0
|v + uxw|(e−x + u2

x) dx+ C

ˆ ∞
0
|w|(e−x + u2

x) dx. (2.30)
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2. To estimate the time derivative of I2, with the help (2.1), (2.5), (2.22) and (2.25), we
obtain (

(v + uxw)(e−x + u2
x)
)
t
+
(
u(v + uxw)(e−x + u2

x)
)
x

=
[
vt + uvx + ux(wt + uwx) + w(uxt + uuxx)

]
(e−x + u2

x)

+ (v + uxw)[(e−x + u2
x)t + (u(e−x + u2

x))x]

=
[
− vux +

ˆ x

0
(uzvz)(z) dz + ux(v + uxw)− 1

2
u2
xw
]
(e−x + u2

x)

+ (v + uxw)(uxe
−x − ue−x)

=
[ˆ x

0
(uzvz)(z) dz +

1

2
u2
xw
]
(e−x + u2

x) + (v + uxw)(uxe
−x − ue−x).

(2.31)

Notice that the estimate of the term 1
2u

2
xw(e−x + u2

x) fails to close directly, we rewrite

1

2
u2
xw =

1

2

ˆ x

0

(
u2
zw
)
z
(z) dz

=
1

2

ˆ x

0
(2uzuzzw + u2

zwz)(z) dz.

(2.32)

Thanks to (2.32), the first two terms on the right hand side of (2.31) can be treated as[ˆ x

0
(uzvz)(z) dz +

1

2
u2
xw
]
(e−x + u2

x)

=
1

2
(e−x + u2

x)

ˆ x

0

(
2uz(vz + uzzw) + u2

zwz
)
(z) dz.

(2.33)

In view of (2.31) and (2.33), we obtain the estimate

d

dt

ˆ ∞
0
|v + uxw|(e−x + u2

x) dx ≤C
ˆ ∞

0
|2ux(vx + uxxw) + u2

xwx| dx

+ C

ˆ ∞
0
|v + uxw|(e−x + u2

x) dx.

(2.34)

3. We now turn to the time derivative of I3, using (2.1), (2.23) and (2.25) to get[
2ux(vx + uxxw) + u2

xwx
]
t
+
[
u(2ux(vx + uxxw) + u2

xwx)
]
x

=2(uxt + uuxx)(vx + uxxw) + 2ux
[
vxt + (uvx)x + uxx(wt + uwx) + w(uxxt + (uuxx)x

]
+ 2uxwx(uxt + uuxx) + u2

x(wxt + (uwx)x)

=− u2
x(vx + uxxw) + 2ux

[
− vuxx + uxx(v + uxw)− wuxuxx

]
− u3

xwx + u2
x(vx + uxxw + uxwx)

=0.

This yields the estimate

d

dt

ˆ ∞
0
|2ux(vx + uxxw) + u2

xwx| dx ≤ 0 (2.35)

Combining the estimates (2.30), (2.34) and (2.35), we deduce the desired estimate (2.29).
This completes the proof of Theorem 2.4. �

2.3.2. Length of path of solutions in transformed coordinates. The analysis in the previous sub–
subsection has provided an estimate on how the norm increases in time for smooth solution to
(2.1). However, even for smooth initial data, the quantity ux may blow up in finite time. When
this happens, a tangent vector may no longer exist, even if it does exist, it is not obvious that
the estimate (2.28) holds. Therefore, we should examine these issues. Indeed, in subsection 2.2
we have proved the following.
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• Every path of solutions θ 7→ uθ can be uniformly approximated by a second path θ 7→ ũθ,
such that, for all but finitely many values of θ ∈ [0, 1], the corresponding solution ũθ remains
piecewise smooth on the domain [0, T ]× R+.

Thus, here we need to show that
• If all solutions uθ are piecewise smooth, with generic singularities along finitely many points

in the t–x plane, then the tangent vectors are still well defined and their norms can be estimated
as before.

In what follows, we are interested not in a single solution, but a path of solutions θ 7→ uθ,
θ ∈ [0, 1]. To this end, we introduce suitable regularity condition that allows us to define the
tangent vector and hence compute the length of the path of solutions.

Definition 2.2. We say that a solution u = u(t, x) of (2.1) has generic singularities for
t ∈ [0, T ] if it admits a representation of the form (2.11), where

(i) the functions (x, u, r, q)(t, ξ) are C∞,
(ii) for t ∈ [0, T ], the following generic condition holds

r = π, rξ = 0 =⇒ rt 6= 0, rξξ 6= 0. (2.36)

Definition 2.3. We say that a path of initial data γ1
0 : θ 7→ uθ0, θ ∈ [0, 1] is a piecewise regular

path if the following conditions hold
(i) There exists a continuous map (ξ, θ) 7→ (x, u, r, q) such that the semilinear system (2.8)–

(2.10) holds for θ ∈ [0, 1], and the function uθ(x, t) whose graph is

Graph (uθ) = {(t, x(t, ξ, θ), u(t, ξ, θ)); (t, ξ) ∈ R+ × R+}

provides a conservative solution of (2.1) with initial data uθ(0, x) = uθ0(x).
(ii) There exist finitely many values 0 = θ0 < θ1 < · · · < θN = 1 such that the map

(ξ, θ) 7→ (x, u, r, q) is C∞ for θ ∈ (θi−1, θi), i = 1, · · · , N , and the solution uθ = uθ(t, x) has only
generic singularities at time t = 0.

In addition, if for all θ ∈ [0, 1]\{θ1, · · · , θN}, the solution uθ has generic singularities for
t ∈ [0, T ], then we say the path of solution γ1

t : θ 7→ uθ is piecewise regular for t ∈ [0, T ].

As a consequence of Theorem 2.3 and Lemma 2.3, we obtain the following Corollary. We
refer the readers to [2] for more details on how to get this corollary.

Corollary 2.1. Given T > 0, let θ 7→ (xθ, uθ, rθ, qθ), θ ∈ [0, 1], be a smooth path of solutions to
the system (2.8)–(2.10). Then there exists a sequence of paths of solution θ 7→ (xθn, u

θ
n, r

θ
n, q

θ
n),

such that
(i) For each n ≥ 1, the path of corresponding solution of (2.1) θ 7→ uθn is regular for t ∈ [0, T ],

according to Definition 2.3.
(ii) For any bounded domain Ω in the t–ξ space, the functions (xθn, u

θ
n, r

θ
n, q

θ
n) converge to

(xθ, uθ, rθ, qθ) uniformly in Ck([0, 1]× Ω), for every k ≥ 1, as n→∞.

Thanks to Corollary 2.1, now we devote to proving that the weighted length of a regular path
satisfies the same estimates as the smooth paths considered in subsection 2.3.1. To begin with,
we derive an expression for the norm of a tangent vector in t–ξ coordinates. To continue, giving
a reference solution u(t, x) of (2.1) and a family of perturbed solutions uε(t, x), we consider
the corresponding smooth solutions of (2.8)–(2.10), say (xε, uε, rε, qε). Assume the perturbed
solutions take the form

(xε, uε, rε, qε)(t, ξ) = (x, u, r, q)(t, ξ) + ε(X,U,R,Q)(t, ξ) + o(ε).

By the smooth coefficients of (2.8), we have that the first order perturbations satisfy a linearized
system which are well defined for (t, ξ) ∈ R+ × R+. Now we express the terms I1–I3 of (2.27)
in terms of (X,U,R,Q).

(1) We begin with the shift in x as

w = lim
ε→0

xε(t, ξε)− x(t, ξ)

ε
= X + xξ ·

∂ξε

∂ε
|ε=0. (2.37)
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(2) The change in u is

v + uxw = lim
ε→0

uε(t, ξε)− u(t, ξ)

ε
= U + uξ ·

∂ξε

∂ε
|ε=0. (2.38)

(3) To achieve the change in the base measure with density u2
x, first, we have

d

dε
qε|ε=0 = lim

ε→0

qε(t, ξε)− q(t, ξ)
ε

= Q+ qξ ·
∂ξε

∂ε
|ε=0.

Then the integrand in I3 is calculated as

d

dε
(qε sin2 r

ε

2
+ q sin2 r

2
xξξ

ε
x)|ε=0

=
(
Q+ qξ ·

∂ξε

∂ε
|ε=0 + qxξ ·

∂ξεx
∂ε
|ε=0

)
sin2 r

2
+
q

2
sin r

[
R+ rξ ·

∂ξε

∂ε
|ε=0

]
.

(2.39)

Notice that
(1 + u2

x) dx = q dξ.

Hence, the relations (2.37)–(2.39) imply the weighted norm of a tangent vector (2.27) can be
written as

‖(w, v)‖u =

3∑
`=1

ˆ ∞
0
|J`(t, ξ)| dξ, (2.40)

where

J1 =
[
X + xξ ·

∂ξε

∂ε
|ε=0

](
e−y(t,ξ) cos2 r

2
+ sin2 r

2

)
q,

J2 =
[
U + uξ ·

∂ξε

∂ε
|ε=0

](
e−y(t,ξ) cos2 r

2
+ sin2 r

2

)
q,

J3 =
(
Q+ qξ ·

∂ξε

∂ε
|ε=0 + q xξ ·

∂ξεx
∂ε
|ε=0

)
sin2 r

2
+
q

2
sin r

[
R+ rξ ·

∂ξε

∂ε
|ε=0

]
.

Note, the horizontal shift variable w in (2.24) can be obtained by propagating along charac-
teristics the shift w0. And on the other hand, ξ is a constant on any given characteristic.
So ∂ξε

∂ε (t, ξ) = ∂ξε

∂ε (0, ξ), hence is a continuous function. Then, it is easy to verify that each
integrand J` is continuous, for ` = 1, 2, 3.

Now, we introduce the definition of the length of piecewise regular path γ1
t : θ 7→ uθ(t) and

examine the appearance of the generic singularity will not impact the Lipschitz property of the
metric.

Definition 2.4. The length ‖γ1
t ‖ of the piecewise regular path γ1

t : θ 7→ uθ is defined as

‖γ1
t ‖ = inf

γ1t

ˆ 1

0

3∑
`=1

ˆ ∞
0
|Jθ` (t, ξ)| dξ dθ,

where the infimum is taken over all piecewise regular path.

The next theorem proves the main goal of this subsection.

Theorem 2.5. Given any T > 0, consider a path of solutions θ 7→ uθ of (2.1), which is

piecewise regular for t ∈ [0, T ]. Moreover, the estimate

ˆ
R+

(uθx)2(x) dx is less than some constant

CE > 0. Then its length satisfies
‖γ1

t ‖ ≤ C‖γ1
0‖, (2.41)

for some constant C > 0 depends only on T and H1(R+)–norm of initial data.

Proof. By the definition of piecewise regular path, we know uθ has generic regularity for any
θ ∈ [0, 1]\{θ1, · · · , θN}. Then the solution uθ is smooth in the t–ξ variables and piecewise
smooth in the t–x variables, thus the existence of the tangent vector is obvious. Now, we claim
that, for θ ∈ [0, 1]\{θ1, · · · , θN}, we have

‖vθ(t)‖uθ(t) ≤ eC1t‖vθ(0)‖uθ(0), (2.42)
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where the constant C1 > 0 depends only on T and H1(R+)–norm of initial data.
In accordance with the definition 2.4, fix η > 0, there exists some ξ, such that, at time t = 0,

we have ˆ 1

0

3∑
`=1

ˆ ∞
0
|Jθ` (0, ξ)| dξ dθ ≤ ‖γ1

0‖+ η.

Integrating (2.42) over θ ∈ [0, 1], one deduces that

‖γ1
t ‖ ≤ C2(‖γ1

0‖+ η),

which yields (2.41), since η > 0 is arbitrary.
The main issue here is to prove the estimate (2.42) satisfies. According to (2.28), (2.42)

holds, if uθ is smooth in the t–x variables. Thus, it remains to show the same result can be
applied if uθ is piecewise smooth with generic singularities. Towards this goal, we first observe
that there exist at most finitely many points Wj = (tj , ξj), j = 1, · · · , N , such that rθ = π,

rθξ = 0, because of the the generic condition (2.36) and the fact that for any bounded time

interval singularity only happens in a bounded set of the (t, x)-plane as proved in the part 1 of
Theorem 2.2. Furthermore, at each point Wj , the map

t 7→
ˆ 1

0

3∑
`=1

ˆ ∞
0
|Jθ` (t, ξ)| dξ dθ

is continuous at each time t = tj . Hence, the metric will not be impacted at (at most finite)

time t = tj when there exist singularities such that rθ = π, rθξ = 0. In fact, these singularities

are corresponding to the starting and ending points of the singularity curve: rθ = π.
Now, it remains to show that, at t 6= tj , the generic singularity does not affect the estimate

(2.28), that is, we will show the time derivative

d

dt

3∑
`=1

ˆ ∞
0
|Jθ` (t, ξ)| dξ

will not be affected by the presence of singularity. Indeed, for a fixed time τ ∈ [0, T ], let the
point (tε, ξε) be the intersection of the Γτ−ε = {(t, ξ); t = τ − ε} and {(t, ξ); rθ(t, ξ) = π}, and
the point (t′ε, ξ

′
ε) be the intersection of the Γτ+ε = {(t, ξ); t = τ + ε} and {(t, ξ); rθ(t, ξ) = π}.

We denote {
Λ+
ε := Γτ+ε ∩ {(t, ξ); ξ ∈ [ξ′ε, ξε]},

Λ−ε := Γτ−ε ∩ {(t, ξ); ξ ∈ [ξ′ε, ξε]}.
Then, we have

lim
ε→0

1

ε

(ˆ
Λ+
ε

−
ˆ

Λ−ε

) 3∑
`=1

|Jθ` (t, ξ)| dξ = 0,

since each integrand is continuous and |ξε − ξ′ε| = O(ε), because at time t 6= tj , we know that

rθ = π, rθξ 6= 0 at singularity. Thus, (2.28) follows even in the presence of singular curve where

rθ = π. This completes the proof of Theorem 2.5. �

2.3.3. Construction of the geodesic distance. Now, we are ready to generalize the metric to the
space H1(R+) and prove the Lipschitz property. Then we will compare our distance with some
familiar distance determined by various norm.

Of course, by a small perturbation on the initial data uθ0 with θ ∈ [0, 1], we can establish
a path of conservative solutions θ 7→ uθ(t, x), which remain piecewise smooth, for all except
finitely many values of θ ∈ [0, 1]. Namely, for all t ∈ [0, T ], the length of the path θ 7→ uθ is well
defined by the formula

‖γ1
t ‖ :=

ˆ 1

0
‖ d
dθ
uθ(t)‖uθ(t) dθ,

where ‖ · ‖u is defined as in (2.27) or equivalently as in (2.40).
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Now, to continue, we construct a geodesic distance d1(·, ·) on the space H1(R+). In light
of Theorem 2.2, there exists an open dense set D ⊂ C3(R+) ∩H1(R+), such that, for u0 ∈ D,
the solution of (2.1) has only generic singularities. Now, on D∞ := C∞0 ∩ D, we construct a
geodesic distance, defined as the infimum among the weighted lengths of all piecewise regular
paths connecting two given points. Thus, by continuity, this distance can be extended from
D∞ to a larger space, defined as the completion of D∞ with respect to the distance d1(·, ·). In
particular, this completion will contain the space H1.

Assume two data u, ũ ∈ D∞, denote

E(u) :=

ˆ ∞
0

u2
x(t, x) dx, E(ũ) :=

ˆ ∞
0

ũ2
x(t, x) dx.

Then fix any constant E1 > 0, denote the set

ΣE1 := {u ∈ H1(R+); E(u) ≤ E1}.

Our distance functional d1(·, ·) is now defined by optimizing over all piecewise regular paths
connecting two solutions of (2.1).

Definition 2.5. For solutions with initial data in D∞ ∩ ΣE1, we define the geodesic distance
d1(u, ũ) as the infimum among the weighted lengths of all piecewise regular paths θ 7→ uθ, which
connect u with ũ, that is, for any time t,

d1(u, ũ) := inf{‖γ1
t ‖; γ1

t is a piecewise regular path, γ1
t (0) = u, γ1

t (1) = ũ,

E(uθ) ≤ E1, for all θ ∈ [0, 1]}.

Now, we can define the metric for the general weak solutions.

Definition 2.6. Let u0 and ũ0 in H1(R+) be two absolute continuous initial data as required
in the existence Theorem 2.1. Denote u and ũ to be the corresponding global weak solutions,
then we define, for any time t,

d1(u, ũ) := lim
n→∞

d1(un, ũn),

for any two sequences of solutions un and ũn in D∞ ∩ ΣE1 with

‖un − u‖H1 → 0, and ‖ũn − ũ‖H1 → 0.

The limit in the definition is independent on the selection of sequences, because the solution
flows are Lipschitz in D∞ ∩ ΣE1 , so the definition is well-defined. Note when

‖un0 − u0‖H1 → 0,

it is easy to show that the corresponding solutions satisfy, for any t > 0,

‖un − u‖H1 → 0

by the semi-linear equations (2.8). Thus the Lipschitz property in Theorem 2.5 can be extended
to the general solutions. Notice that the concatenation of two piecewise regular paths is still a
piecewise regular path (after a suitable re–parameterization), so d1(·, ·) is a distance. With the
help of Theorem 2.5, we have

Theorem 2.6. The geodesic distance d1(·, ·) renders Lipschitz continuous the flow generated by
initial boundary value problem (2.1)–(2.3). In particular, let u0 and ũ0 be two H1(R+) initial
data, then for arbitrarily given T > 0, when t ∈ [0, T ], the corresponding solutions u(t, x) and
ũ(t, x) satisfy

d1

(
u(t), ũ(t)

)
≤ Cd1(u0, ũ0),

where the constant C depends only on T and H1(R+)–norm of initial data.

Finally, we study the relations among our distance d1(·, ·) and other distances such as Sobolev
distance and Kantorovich-Rubinstein or Wasserstein distance in the next two Propositions.
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Proposition 2.1. For any u, ũ ∈ H1, there exists some constant C depends only on E1, such
that,

d1(u, ũ) ≤ C
(
‖u− ũ‖L∞ + ‖ux − ũx‖L2

)
. (2.43)

Proof. For θ ∈ [0, 1], consider the path γ1
t : θ 7→ uθ as

uθ = θũ+ (1− θ)u. (2.44)

Obviously, when θ = 0, 1, uθ coincides with u and ũ, respectively. Moreover, the estimate uθx
satisfies ˆ ∞

0
(uθx)2(t, x) dx =

ˆ ∞
0

[θũx + (1− θ)ux]2 dx

≤
ˆ ∞

0

(
[θ2 + θ(1− θ)]ũ2

x + [(1− θ)2 + θ(1− θ)]u2
x

)
dx

≤max{E(u), E(ũ)} ≤ E1.

(2.45)

On the other hand, by virtue of (2.44), we obtain

vθ =
duθ

dθ
= ũ− u. (2.46)

To derive an upper bound for the weighted length ‖γ1
t ‖, we can choose the shift w = 0 in (2.27).

Indeed, by (2.44)–(2.46) and the definition of the weighted length of the path γ1
t , we have

‖γ1
t ‖ =

ˆ 1

0
‖vθ‖uθ dθ

=

ˆ 1

0

ˆ ∞
0

(
|vθ|(e−x + (uθx)2) + 2|uθxvθx|

)
dx dθ

≤‖ũ− u‖L∞
ˆ 1

0

ˆ ∞
0

(e−x + (uθx)2) dx dθ + 2‖ũx − ux‖L2

ˆ 1

0
‖uθx‖2L2 dθ

≤C
(
‖u− ũ‖L∞ + ‖ux − ũx‖L2

)
,

which implies that (2.43) holds. This completes the proof of Proposition 2.1. �

Proposition 2.2. For any u, ũ ∈ H1(R+) ∩ L1
loc(R+), there exists some constant C depends

only on E1, such that,
‖u0 − ũ0‖L1

loc
≤ C · d1(u, ũ), (2.47)

sup
‖f‖C1≤1

|
ˆ
f dµ−

ˆ
f dµ̃| ≤ d1(u, ũ), (2.48)

where µ, µ̃ are the measures with densities u2
x and ũ2

x with respect to Lebesgue measure.

Proof. Let γ1
t : θ 7→ uθ be a regular path connecting u with ũ.

1. Thanks to the inequality

|v| = |v + uxw − uxw| ≤ |v + uxw|+ |uxw|,
for any bounded domain A, it follows from the definition 2.6, (2.26) and (2.46) that

d1(u, ũ) ≥ C3 inf
γ1t

ˆ 1

0

ˆ
A
|vθ| dx dθ = C3 inf

γ1t

ˆ 1

0

ˆ
A
|du

θ

dθ
| dx dθ ≥ C4‖u− ũ‖L1(A),

for some constants C3, C4 > 0. This yields (2.47).
2. For any function f with ‖f‖C1 ≤ 1, denote µθ be the measures with density (uθx)2 with

respect to Lebesgue measure, then the following holds

|
ˆ 1

0

d

dθ

ˆ
f dµθ dθ| ≤

ˆ 1

0

ˆ ∞
0
|f ′| · |wθ|(uθx)2 dx dθ

+

ˆ 1

0

ˆ ∞
0
|f | · |2uθx(vθx + uθxxw

θ) + (uθx)2wθx| dx dθ,
(2.49)
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where the two integrands on the right hand side of (2.49) are less than I1 and I3 of (2.27).
Hence, we get the estimate (2.48). This completes the proof of Proposition 2.2. �

The metric (2.48) is a Kantorovich-Rubinstein distance, which is equivalent to a Wasserstein
distance by a duality theorem [17].

3. The two–component Hunter–Saxton equations

Aim of this section is to study the generic regularity and stability of solutions to the two–
component Hunter–Saxton equations. The procedure is actually as same as in Section 2, while
the details are different due to the presence of ρ.

Note that the symbols in this section have no relation to the previous section.

3.1. Preliminaries. Recall the two–component Hunter–Saxton equationsut + uux =
1

2

ˆ x

0
(u2
z + ρ2)(z) dz,

ρt + (uρ)x = 0.
(3.1)

with initial–boundary conditions

u(0, x) = u0(x), ρ(0, x) = ρ0(x), u(t, 0) = 0, (3.2)

and a compatibility conditions

u0(0) = 0, u′0(0) = 0. (3.3)

For smooth solutions, differentiating equation (3.1)1 with respect to the spatial variable x, we
obtain

uxt + (uux)x =
1

2
(u2
x + ρ2). (3.4)

Multiplying (3.4) by ux and (3.1)2 by ρ, then summing up the resultant equations, we have

(u2
x + ρ2)t +

(
u(u2

x + ρ2)
)
x

= 0. (3.5)

Thus, integrating (3.5) with respect to the x–variable, we see that for smooth solutions the total
energy

E(t) :=

ˆ ∞
0

(u2
x + ρ2)(t, x) dx = E(0) (3.6)

is constant in time.
Now, we state the existence results of conservative solutions to the two–component Hunter-

Saxton system (3.1)–(3.3), c.f. [15].

Theorem 3.1. For any initial data u0 ∈ H1(R+), ρ0 ∈ L2(R+), the two–component Hunter–
Saxton equations (3.1)–(3.3) admits a global conservative solution u = u(t, x), ρ = ρ(t, x). More
precisely, there exists a family of Radon measures {µ(t); t ∈ R+}, depending continuously on time
with respect to the topology of weak convergence of measures, such that the following properties
hold.

(i) The equations (3.1) holds in the sense of distribution.
(ii) There exists a null set A ⊂ R with meas(A)=0 such that for every t /∈ A the measure µ(t)

is absolutely continuous and has density u2
x(t, ·) + ρ2(t, ·) with respect to Lebesgue measure.

(iii) The function $ = u2
x + ρ2 provides a distributional solution to the balance law $t +

(u$)x = 0.
(iii) The family {µ(t); t ∈ R+} provides a measure–valued solution $ to the linear transport

equation with source $t + (u$)x = 0.

Remark 3.1. For smooth solution, along the characteristic dx(t)
dt = u(t, x(t)), we know from

(3.1)1 that the value of the solution u is

u(t, x(t)) = u0(x) +
1

2

ˆ t

0

ˆ x

0

(
u2
z + ρ2

)
(z) dz dt.
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More precisely, one has the bound

‖u(t, x)‖L∞ ≤ ‖u0(x)‖L∞ +
t

2
E(0).

3.2. Generic regularity of solutions to the two–component Hunter–Saxton equation.
In this subsection, we prove the generic regularity for solutions of (3.1)–(3.3), using some virtues
of proof in [2, 14].

Similar to Subsection 2.2, we begin our subsection by introducing new coordinates (t, ξ),
where ξ is implicitly defined as

ξ :=

ˆ ȳ(ξ)

0
(1 + u2

0,x + ρ2
0) dx.

The characteristic is corresponding to the curve on which ξ equals to a constant,

∂ty(t, ξ) = u(t, y(t, ξ)), y(0, ξ) = ȳ(ξ).

Some suitable transformation of variables are

p = (1 + u2
x + ρ2) · ∂y

∂ξ
, L =

p

1 + u2
x + ρ2

, α =
uxp

1 + u2
x + ρ2

, β =
ρp

1 + u2
x + ρ2

. (3.7)

then one obtains a semi–linear system

ut = S,

Sξ = 1
2(p− L),

pt = α,

Lt = α,

αt = 1
2(p− L),

βt = 0.

(3.8)

We derive the semilinear system as follows. For any t > τ > 0 and ξ1, ξ2, by (3.5) and (3.7),
the equation (3.8)3 can be established asˆ ξ2

ξ1

ˆ t

τ

∂

∂s
p(s, η) ds dη =

ˆ ξ2

ξ1

(
p(t, η)− p(τ, η)

)
dη

=

ˆ x(t,ξ2)

x(t,ξ1)
(1 + u2

x + ρ2)(t, y) dy −
ˆ x(τ,ξ2)

x(τ,ξ1)
(1 + u2

x + ρ2)(τ, y) dy

=

ˆ t

τ

∂

∂s

ˆ x(s,ξ2)

x(s,ξ1)
(1 + u2

x + ρ2)(s, y) dy ds =

ˆ t

τ

ˆ x(s,ξ2)

x(s,ξ1)
ux(s, y) dy ds

=

ˆ t

τ

ˆ ξ2

ξ1

uxp

1 + u2
x + ρ2

(s, η) dη ds =

ˆ t

τ

ˆ ξ2

ξ1

α(s, η) dη ds.

The other terms can be estimated similarly, we omit it here for brevity.
By expressing the solution (u, ρ)(t, ξ) in terms of the original variables (t, x), one obtains a

solution of the initial–boundary problem (3.1)–(3.3). Indeed, we have the following results, c.f.
[15].

Lemma 3.1. Let (x, u, L, α, β, p)(t, ξ) be a smooth solution to the system (3.8) with p > 0.
Then the set of points

Graph (u, ρ) := {(t, x(t, ξ), u(t, ξ), ρ(t, ξ)); (t, ξ) ∈ R+ × R+} (3.9)

is the graph of a conservative solution to the two–component Hunter–Saxton equations (3.1)–
(3.3).

As a consequence of the semilinear system (3.8), we obtain the following estimates.

Remark 3.2. From the above semilinear system, we have the following exponential estimates

e−C1t ≤ p, L ≤ eC1t, and C2e
−C1t ≤ α ≤ C2e

C1t,

where the constant C1, C2 are related with initial data.
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We provide the consistency condition validated on system (3.8).

Lemma 3.2. For any fixed ξ, if L,α, β, p satisfy

L2 + α2 + β2 = Lp (3.10)

at initial time, then it also holds for any time t.

Proof. By virtue of system (3.8), we can get

d

dt
(L2 + α2 + β2 − Lp) = 2LLt + 2ααt + 2ββt − Lpt − Ltp

= 2Lα+ α(p− L)− Lα− αp
= 0.

This completes the proof of Lemma 3.2. �

Before proving the generic property of the two–component Hunter–Saxton equations, we
indicate the key point when the singularity happens.

Lemma 3.3. The singularity only appears on the characteristics where β(0) = 0.

Proof. From (3.8)6, on the characteristics where β(0, ξ) 6= 0, we know β(t) = β(0) 6= 0. Solving
L from (3.10), we have

L =
p±

√
p2 − 4(α2 + β2)

2
.

Then the smaller root has the following property

L =
p−

√
p2 − 4(α2 + β2)

2
=

2(α2 + β2)

p+
√
p2 − 4(α2 + β2)

≥ α2 + β2

p
≥ β2

p
≥ β2(0)e−C1t.

Thus, by the definition of L and Remark 3.2, it holds that

|ux(t, ξ)| ≤ 1

β(0)
eC1t,

which implies that the singularity only appears on the characteristics where β(0) = 0. This
completes the proof of Lemma 3.3. �

Then we introduce the following technical lemma for later references. Please find the proof
of this lemma in [14].

Lemma 3.4. Consider an ODE system

d

dt
uε = f(uε), uε(0) = u0 + ε1v1 + · · ·+ εmvm,

where uε(t) : R → Rn, f is a Lipschitz function. The system is well–posed in [0, T ∗). Assume
the matrix

Dεu
ε(0) = (v1,v2, · · · ,vm) ∈ Rn×m,

and the rank of this matrix is rank (Dεu
ε(0) = k. Then for any t ∈ [0, T ∗),

rank (Dεu
ε(t)) = k.

Similar to Lemma 2.2, we can construct several families of perturbations of a given solutions
to (3.8).

Lemma 3.5. Let (u, L, α, β, p) be a smooth solution of the semilinear system (3.8) and given a
point (t0, ξ0) ∈ R+ × R+.

(1) If (L,Lξ, Lξξ)(t0, ξ0) = (0, 0, 0), then there exists a 3–parameter family of smooth solutions

(uϑ, Lϑ, αϑ, βϑ, pϑ) of (3.8), depending smoothy on ϑ with ϑ in a small enough open ball centered
at the origin in R3, such that the following holds.

(i) when ϑ = 0 ∈ R3, one recovers the original solution, namely (u0, L0, α0, β0, pθ) =
(u, L, α, β, p).
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(ii) At the point (t0, ξ0), when ϑ = 0, one has

rank Dϑ(Lϑ, Lϑξ , L
ϑ
ξξ) = 3. (3.11)

(2) If (L,αξ, αξξ)(t0, ξ0) = (0, 0, 0), then there exists a 3–parameter family of smooth solutions

(uϑ, Lϑ, αϑ, βϑ, pϑ) of (3.8), depending smoothy on ϑ with ϑ in a small enough open ball centered
at the origin in R3, satisfying (i) (ii) above with (3.11) replaced by

rank Dϑ(Lϑ, αϑξ , α
ϑ
ξξ) = 3.

(3) If (L, βξ, βξξ)(t0, ξ0) = (0, 0, 0), then there exists a 3–parameter family of smooth solutions

(uϑ, Lϑ, αϑ, βϑ, pϑ) of (3.8), depending smoothy on ϑ with ϑ in a small enough open ball centered
at the origin in R3, satisfying (i) (ii) above with (3.11) replaced by

rank Dϑ(Lϑ, βϑξ , β
ϑ
ξξ) = 3.

In light of Lemma 3.4, this lemma can be proved by showing boundedness of coefficient matrix
of (3.8) and the following two equations, that is, equations of first order derivatives

∂

∂t
Lξ = αξ,

∂

∂t
αξ =

1

2
(pξ − Lξ),

∂

∂t
pξ = αξ,

and equations of second order derivatives

∂

∂t
Lξξ = αξξ,

∂

∂t
αξξ =

1

2
(pξξ − Lξξ),

∂

∂t
pξξ = αξξ.

The next lemma can be proved in a similar way with Lemma 2.3 of the one–component Hunter–
Saxton equation or [14].

Lemma 3.6. Let a compact domain of the form

Ω := {(t, ξ); 0 ≤ t ≤ T, 0 ≤ ξ ≤M},

and define S be the family of all C2 solutions (u, L, α, β, p) to the semilinear system (3.8), with
p > 0 for all (t, ξ) ∈ [0, T ] × R+. Moreover, define S ′ ⊂ S be the subfamily of all solutions
(u, L, α, β, p), such that for (t, ξ) ∈ Ω, none of the the following values is attained

(L,Lξ, Lξξ) = (0, 0, 0), (L,αξ, αξξ) = (0, 0, 0), (L, βξ, βξξ) = (0, 0, 0).

Then S ′ is a relatively open and dense subset of S, in the topology induced by C2(Ω).

Now, we are ready to prove the main result of this subsection.

Theorem 3.2 (Generic regularity). For any initial data u0(x) ∈ H1(R+), ρ0(x) ∈ C2(R+) ∩
L2(R+). Assume ρ0(x) has finitely number of zero points {x1, · · · , xn}. u0(x) is C3 in each
interval Ii := (xi, xi+1), (i = 0, 1, · · · , n)(x0 = −∞, xn+1 = +∞), and ρ0(x) is C2 in each
interval Ii. Then the solution u(t, x) is three times continuously differentiable and ρ(t, x) is
twice continuously differentiable in the complement of finitely many isolated points within the
domain [0, T ]× R+.

Proof. This theorem can be proved in an entirely similar way as in Theorem 2.2. To make our
paper brief, we pick up a proof similar to the one in [14], using which we can also find more
detailed structures of singularities.
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First, formally differentiating (3.1)2 and (3.4) with respect to the spatial variable x, we obtain{
uxxt + uuxxx + 2uxuxx − ρρx = 0,

ρxt + uρxx + uxxρ+ 2uxρx = 0.

or we can express it as

d

dt

(
uxx
ρx

)
=

(
−2ux ρ
−ρ −2ux

)(
uxx
ρx

)
.

Set the Lyapunov function W (t) := u2
xx(t) + ρ2

x(t), a direct computation shows that

d

dt
W (t) =2uxx

duxx
dt

+ 2ρx
dρx
dt

=2uxx(ρρx − 2uxuxx)− 2ρx(uxxρ+ 2uxρx)

=− 4ux(u2
xx + ρ2

x)

≤ 4

β(0)
eC1tW (t),

On the characteristic where β(0) 6= 0, the above estimate together with the Gronwall inequality
yields

W (t) ≤W (0)eCe
C1t
, (3.12)

where the constant C is a constant related with initial data. On the other hand, uxxx and ρxx
satisfy {

uxxxt + uuxxxx + 3uxuxxx + 2u2
xx − ρ2

x − ρρxx = 0,

ρxxt + uρxxx + 3uxxρx + 3uxρxx + uxxxρ = 0,

or we can express it as

d

dt

(
uxxx
ρxx

)
=

(
−3ux ρ
−ρ −3ux

)(
uxxx
ρxx

)
+

(
ρ2
x − 2u2

xx

−3uxxρx

)
.

Similarly, consider the Lyapunov function V (t) := u2
xxx + ρ2

xx, it holds that

d

dt
V (t) =2uxxx

duxxx
dt

+ 2ρxx
dρxx
dt

=2uxxx(ρ2
x + ρρxx − 3uxuxxx − 2u2

xx)− 2ρxx(3uxxρx + 3uxρxx + ρuxxx)

=− 6ux(u2
xxx + ρ2

xx)− 6uxxρxρxx + 2uxxx(ρ2
x − 2u2

xx)

≤
( 6

β(0)
eC1t + C

)
V (t) + CW 2(t).

Thus, by using (3.12) and the Gronwall inequality on the above estimate, we obtain

V (t) ≤ (V (0) + C

ˆ t

0
W 2(s)eCe

C1t
dt)eCe

C1t
,

where the constant C is related with initial data. So we have proved the point–wise estimate of
higher order derivatives of u and ρ when x ∈ Ii, for every i = 0, 1, · · · , n. This also shows that
whenever ux is bounded, W (t) and V (t) are bounded.

Assume (t0, ξ0) is an singular point, then by the definition of L,α, β, we have

L(t0, ξ0) = α(t0, ξ0) = β(t0, ξ0) = 0.

By the equation of α, there holds αt 6= 0 at point (t0, ξ0). So we can take a small neighborhood
of t0 such that at time t = t0 + ε, α(t0 + ε, ξ0) 6= 0. This together with (3.10) implies that
L(t0 + ε, ξ0) 6= 0. Thus, it follows from the definition of L that there is a time T0, such that ux
is bounded in the interval [t0 + ε, T0 − ε]. Hence ux is bounded in any proper sub–interval of
(t0, T0) along the characteristic ξ = ξ0, where we have used the fact that ε is arbitrarily small.

This concludes that

• Singular points are isolated on the characteristics where ρ = 0.
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Now, notice by (3.8) that
(p− L)t = 0,

while p(0, ξ) ≡ 1 and L(0, ξ) < 1 for any ξ ≥ 0. So (p − L)(t, ξ) is always a positive constant.
Hence, on any given characteristic, there exists a positive constant δ > 0, such that, at any
singularity point on the characteristic, α = 0, L = 0 while p > δ > 0, hence αt = 1

2(p−L) > 1
2δ.

Using this transversality property, one can derive that

• There are only finitely many singular points on each characteristic in the interval [0, T ].

This completes the proof of Theorem 3.2. �

Comparing to the generic regularity for the one–component Hunter–Saxton in Theorem 2.2,
we have the following corollary, the proof is similar to [14], we omit it here for brevity.

Corollary 3.1 (Generic regularity). Let T > 0 be given, then there exists an open dense set

D ⊂ {(u0, ρ0); u0 ∈ C3(R+) ∩H1(R+), ρ0 ∈ C2(R+) ∩ L2(R+)},
such that, for (u0, ρ0) ∈ D, the solution (u(t, x), ρ(t, x)) of (3.1) satisfies that u(t, x) is three
times continuously differentiable and ρ(t, x) is twice continuously differentiable in the comple-
ment of finitely many isolated points within the domain [0, T ]× R+.

At this stage, we study families of conservative solutions (uθ, ρθ) = (u, ρ)(t, x, θ) of (3.1) with
initial data (u, ρ)(0, x, θ) = (u0, ρ0)(x, θ) =: (uθ0, ρ

θ
0)(x), depending smoothly on an additional

parameter θ ∈ [0, 1], More precisely, these paths of initial data will lie in the space

X2 :=
(
C3
(
R+ × [0, 1]

)
∩ L∞

(
[0, 1]; H1(R+)

))
×
(
C2
(
R+ × [0, 1]

)
∩ L∞

(
[0, 1]; L2(R+)

))
.

Now, we have the following generic regularity for 1–parameter family of solutions. Roughly
speaking, for a 1–parameter family of initial θ 7→ (ûθ0, ρ̂

θ
0), with θ ∈ [0, 1], it can be uniformly

approximated by a second path of initial data θ 7→ (uθ0, ρ
θ
0), such that the corresponding solutions

(uθ, ρθ)(t, x) of (3.1) are piecewise smooth in the domain [0, T ]× R+. The argument is similar
to Theorem 3.2 and Corollary 3.1, we omit it here for brevity.

Theorem 3.3. Let T > 0 be given, then for any 1–parameter family of initial data (ûθ0, ρ̂
θ
0) ∈ X2

and any ε > 0, there exists a perturbed family (x, θ) 7→ (uθ0, ρ
θ
0)(x) such that

‖(uθ0 − ûθ0, ρθ0 − ρ̂θ0)‖X2 < ε,

and moreover, for all except at most finitely many θ ∈ [0, 1], the conservative solution (uθ, ρθ)(t, x)
of (3.1) is smooth in the complement of finitely many points in the domain [0, T ]× R+.

3.3. Lipschitz metric for the two–component Hunter–Saxton equations. Now, we
study stability of solutions to (3.1)–(3.3) by constructing a Lipschitz metric.

3.3.1. The norm of tangent vectors for smooth solutions. Similar to sub–subsection 2.3.1, we
establish a Finsler norm on tangent vector for smooth solutions first. Let (u, ρ)(t, x) be a smooth
solution to (3.1) and consider a family of perturbed solutions of the form

uε(x) = u(x) + εv(x) + o(ε), ρε(x) = ρ(x) + ε%(x) + o(ε). (3.13)

A straightforward calculation yields that the first order perturbations v and % satisfy

vt + uvx + vux =

ˆ x

0
(uzvz + ρ%)(z) dz, (3.14)

and
%t + u%x + %ux + vρx + ρvx = 0. (3.15)

Differentiating (3.14) with respect to x, one obtain

vxt + uvxx + uxvx + vuxx − ρ% = 0. (3.16)

In a similar fashion as in (2.25), we need to add a quantity w(t, x) measuring the horizontal
shift which is satisfying

wt + uwx = v + uxw, w(0, x) = w0(x). (3.17)
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Introducing a Finsler norm

‖(v, %)‖(u,ρ) := inf
w∈A
‖(w, v, %)‖(u,ρ),

where
A = {solutions w(t, x) of (3.17) with smooth initial data w0(x)}.

Here the norm is defined as

‖(w, v, %)‖(u,ρ)

=

ˆ ∞
0

{
|w|(e−x + u2

x + ρ2) + |v + uxw|(e−x + u2
x + ρ2) + |%+ ρxw + ρwx|e−x

}
dx

+

ˆ ∞
0
|2ux(vx + uxxw) + 2ρ(%+ ρxw) + (u2

x + ρ2)wx| dx

=:I1 + I2 + I3 + I4.

(3.18)

The meaning for I1, I2, I4 in (3.18) are similar as I1, I2, I3 in (2.27). While I3 accounts for the
change in base measure with density ρ. In fact, we are looking at

lim
ε→0

ρε(x+ εw(x)) dxε − ρ(x) dx

ε

= lim
ε→0

(
ρε(x+ εw(x))− ρ(x)

)
dxε − ρ(x)

(
dxε − dx

)
ε

=
(
%+ ρxw + ρwx

)
dx.

Now, we will make good use of (3.1), (3.5), (3.14)–(3.16) and (3.17) to prove the following
theorem.

Theorem 3.4. Let (u, ρ) be a smooth solution to (3.1)–(3.3), and assume that the first order
perturbations (v, %) satisfy the equations (3.14)–(3.16). Then for any τ > 0, we have

‖(v, σ)(τ)‖(u,ρ)(τ) ≤ eCτ‖(v, σ)(0)‖(u0,ρ0), (3.19)

for some constant C > 0 depending only on T and H1(R+)× L2(R+)–norm of initial data..

Proof . We prove Theorem 3.4 by four steps.
1. Exactly as in (2.30), we begin with the time derivative of I1, due to (3.5) and (3.17), it is

easy to get [
w(e−x + u2

x + ρ2)
]
t
+
[
uw(e−x + u2

x + ρ2)
]
x

=(wt + uwx)(e−x + u2
x + ρ2) + w[(e−x + u2

x + ρ2)t + (u(e−x + u2
x + ρ2))x]

=(v + uxw)(e−x + u2
x + ρ2) + w(uxe

−x − ue−x).

This yields the estimate

d

dt

ˆ ∞
0
|w|(e−x + u2

x + ρ2) dx ≤
ˆ ∞

0
|v+ uxw|(e−x + u2

x + ρ2) dx+C

ˆ ∞
0
|w|(e−x + u2

x + ρ2) dx.

(3.20)
2. Next, we turn to estimate the time derivative of I2, using (3.1)1, (3.5), (3.14) and (3.17),

we obtain[
(v + uxw)(e−x + u2

x + ρ2)
]
t
+
[
u(v + uxw)(e−x + u2

x + ρ2)
]
x

=[vt + uvx + ux(wt + uwx) + w(uxt + uuxx)](e−x + u2
x + ρ2)

+ (v + uxw)[(e−x + u2
x + ρ2)t + (u(e−x + u2

x + ρ2))x]

=
[
− vux +

ˆ x

0
(uzvz + ρ%)(z) dz + ux(v + uxw) +

1

2
w(ρ2 − u2

x)
]
(e−x + u2

x + ρ2)

+ (v + uxw)(uxe
−x − ue−x)

=
[1
2

(u2
xw + ρ2w) +

ˆ x

0
(uzvz + ρ%)(z) dz

]
(e−x + u2

x + ρ2) + (v + uxw)(uxe
−x − ue−x).

(3.21)
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As in (2.32), we can easily express the first term on the right hand side of (3.21) as

1

2
(u2
xw + ρ2w)(x) =

1

2

ˆ x

0

(
u2
zw + ρ2w

)
z
(z) dz

=
1

2

ˆ x

0

(
2uzuzzw + 2ρρzw + (u2

z + ρ2)wz
)
(z) dz.

which, in combination with the second term on the right hand side of (3.21) that[1
2

(u2
xw + ρ2w) +

ˆ x

0
(uzvz + ρ%)(z) dz

]
(e−x + u2

x + ρ2)

=
1

2
(e−x + u2

x + ρ2)

ˆ x

0

[
2uz(vz + uzzw) + 2ρ(%+ ρzw) + (u2

z + ρ2)wz
]
(z) dz.

(3.22)

Plugging (3.22) into (3.21), it holds that

d

dt

ˆ ∞
0
|v + uxw|(e−x + u2

x + ρ2) dx ≤ C
ˆ ∞

0
|v + uxw|(e−x + u2

x + ρ2) dx

+ C

ˆ ∞
0
|2ux(vx + uxxw) + 2ρ(%+ ρxw) + (u2

x + ρ2)wx| dx.
(3.23)

3. Now, we deal with the time derivative of I3, with the help of (3.1)2, (3.15) and (3.17), we
can get

[%+ ρxw + ρwx]t +
[
u(%+ ρxw + ρwx)

]
x

=%t + (u%)x + ρx(wt + uwx) + w(ρxt + (uρx)x) + ρ(wxt + (uwx)x) + wx(ρt + uρx)

=− vρx − vxρ+ ρx(v + uxw)− w(uxρx + uxxρ) + ρ(vx + uxxw + uxwx)− wxuxρ
=0.

Thus, we have[
(%+ ρxw + ρwx)e−x

]
t
+
[
ue−x(%+ ρxw + ρwx)

]
x

= −e−xu(%+ ρxw + ρwx),

which implies

d

dt

ˆ ∞
0
|%+ ρxw + ρwx|e−x dx ≤ C

ˆ ∞
0
|%+ ρxw + ρwx|e−x dx. (3.24)

4. Finally, we repeat the same argument on I4, recall (3.1), (3.15), (3.16) and (3.17), we
compute[

2ux(vx + uxxw) + 2ρ(%+ ρxw) + (u2
x + ρ2)wx

]
t

+
[
u
(
2ux(vx + uxxw) + 2ρ(%+ ρxw) + (u2

x + ρ2)wx
)]
x

=2(uxt + uuxx)(vx + uxxw) + 2ux
[
vxt + (uvx)x + uxx(wt + uwx) + w(uxxt + (uuxx)x

]
+ 2(ρt + uρx)(%+ ρxw) + 2ρ

[
%t + (u%)x + ρx(wt + uwx) + w(ρxt + (uρx)x

]
+ 2uxwx(uxt + uuxx) + 2ρwx(ρt + uρx) + (u2

x + ρ2)(wxt + (uwx)x)

=(ρ2 − u2
x)(vx + uxxw) + 2ux[ρ%− vuxx + uxx(v + uxw) + w(ρρx − uxuxx)]

− 2uxρ(%+ ρxw) + 2ρ[−vρx − ρvx + ρx(v + uxw)− w(uxxρ+ uxρx)]

+ uxwx(ρ2 − u2
x)− 2uxρ

2wx + (u2
x + ρ2)(vx + uxwx + uxxw) = 0.

This yields

d

dt

ˆ ∞
0
|2ux(vx + uxxw) + 2ρ(%+ ρxw) + (u2

x + ρ2)wx| dx ≤ 0. (3.25)

Thus, putting together the estimates (3.20), (3.23)–(3.25), we conclude the desired inequality
(3.19). This completes the proof of Theorem 3.4. �
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3.3.2. Length of a path of solutions in transformed coordinates. Assume (t0, ξ0) is the point of
singularity, then by definition (3.7), we have L(t0, ξ0) = α(t0, ξ0) = β(t0, ξ0) = 0. Considering
the consistency condition (3.10), differentiating it with respect to ξ, one obtains

2LLξ + 2ααξ + 2ββξ = Lξp+ Lpξ. (3.26)

At the singular point, we have Lξ = 0, since p > 0. Taking derivative ∂ξ to (3.26), then
at the singular point, we finally derive 2α2

ξ + 2β2
ξ = Lξξq. Since the generic singularity is

Lξ = 0, Lξξ 6= 0, we can conclude generically αξ and βξ cannot be zero at the same time. Thus,
we give the following definitions.

Definition 3.1. We say that a solution (u, ρ)(t, x) of (3.1) has generic singularities for t ∈
[0, T ] if it admits a representation of the form (3.9), where

(i) the functions (x, u, L, α, β, q)(t, ξ) are C∞,
(ii) for t ∈ [0, T ], the following generic conditions hold

(G1). L = 0, Lξ = 0, αξ = 0 =⇒ βξ 6= 0, Lξξ 6= 0, αξξ 6= 0,

(G2). L = 0, Lξ = 0, βξ = 0 =⇒ αξ 6= 0, Lξξ 6= 0, βξξ 6= 0.

Definition 3.2. We say that a path of initial data γ2
0 : θ 7→ (uθ0, ρ

θ
0), θ ∈ [0, 1] is a piecewise

regular path if the following conditions hold
(i) There exists a continuous map (ξ, θ) 7→ (x, u, L, α, β, p) such that the semilinear system

(3.8) holds for θ ∈ [0, 1], and the function (uθ, ρθ)(x, t) whose graph is

Graph (uθ, ρθ) = {(t, x(t, ξ, θ), u(t, ξ, θ), ρ(t, ξ, θ)); (t, ξ) ∈ R+ × R+}

provides the conservation solution of (3.1) with initial data uθ(0, x) = uθ0(x), ρθ(0, x) = ρθ0(x).
(ii) There exist finitely many values 0 = θ0 < θ1 < · · · < θN = 1 such that the map

(ξ, θ) 7→ (x, u, L, α, β, p) is C∞ for θ ∈ (θi−1, θi), i = 1, · · · , N , and the solution (uθ, ρθ)(t, x) has
only generic singularities at time t = 0.

In addition, if for all θ ∈ [0, 1]\{θ1, · · · , θN}, the solution (uθ, ρθ)(t) has only generic singu-
larities for t ∈ [0, T ], then we say the path of solution γ2

t : θ 7→ (uθ, ρθ) is piecewise regular
for t ∈ [0, T ].

Thanks to the argument in Subsection 3.2, we now have the following corollary, which shows
that the set of piecewise regular paths is dense.

Corollary 3.2. Given T > 0, let θ 7→ (xθ, uθ, Lθ, αθ, βθ, pθ), θ ∈ [0, 1], be a smooth path
of solutions to the system (3.8). Then there exists a sequence of paths of solutions θ 7→
(xθn, u

θ
n, L

θ
n, α

θ
n, β

θ
n, p

θ
n), such that

(i) For each n ≥ 1, the path of corresponding solutions of (3.1) θ 7→ (uθn, ρ
θ
n) is regular for

t ∈ [0, T ], according to Definition 3.2.
(ii) For any bounded domain Ω in the t–ξ space, the functions (xθn, u

θ
n, L

θ
n, α

θ
n, β

θ
n, p

θ
n) converge

to (xθ, uθ, Lθ, αθ, βθ, pθ) uniformly in Ck([0, 1]× Ω), for every k ≥ 1, as n→∞.

Similar to sub–subsection 2.3.2, we first derive an expression for the norm of a tangent vector
in the t–ξ coordinates. To this end, for a reference solution (u, ρ) of (3.1) and a family of
perturbed solutions (uε, ρε), we assume that, in the t–ξ coordinates, these define a smooth
family of solutions of (3.8), say (xε, uε, Lε, αε, βε, pε). Consider the perturbed solutions of the
form

(xε, uε, Lε, αε, βε, pε) = (x, u, L, α, β, p) + ε(X,U,L,A,B, P ) + o(ε).

By the smooth coefficients of (3.8), we have that the first order perturbations satisfy a linearized
system and are well defined for (t, ξ) ∈ R+ × R+. In the following, our main goal is to express
the quantities w, v, % appearing in (3.18) in terms of (X,U,L,A,B, P ). Indeed,

(1) The shift in x is computed by

w = lim
ε→0

xε(t, ξε)− x(t, ξ)

ε
= X + xξ ·

∂ξε

∂ε
|ε=0. (3.27)



26 H. CAI, G. CHEN, Y. SHEN, AND Z. TAN

(2) We will calculate the change in u as

v + uxw = lim
ε→0

uε(t, ξε)− u(t, ξ)

ε
= U + uξ ·

∂ξε

∂ε
|ε=0. (3.28)

(3) To achieve the change in base measure with density ρ, first, we have

d

dε
βε|ε=0 = lim

ε→0

βε(t, ξε)− β(t, ξ)

ε
= B + βξ ·

∂ξε

∂ε
|ε=0.

Then the integrand in I3 is calculated as

d

dε
(βε + βL · ξεx)|ε=0 = B + βξ ·

∂ξε

∂ε
|ε=0 + βL · ∂ξ

ε
x

∂ε
|ε=0. (3.29)

(4) To complete the analysis, we have to concern the term due to the change in base measure
with density u2

x + ρ2. Indeed, it follows

d

dε
(pε − Lε + pL · ξεx − L2 · ξεx)|ε=0 = P − L+ (pξ − Lξ) ·

∂ξε

∂ε
|ε=0 + (p− L)L · ∂ξ

ε
x

∂ε
|ε=0, (3.30)

where

d

dε
pε|ε=0 = lim

ε→0

pε(t, ξε)− p(t, ξ)
ε

= P + pξ ·
∂ξε

∂ε
|ε=0,

and

d

dε
Lε|ε=0 = lim

ε→0

Lε(t, ξε)− L(t, ξ)

ε
= L+ Lξ ·

∂ξε

∂ε
|ε=0.

Notice that

(1 + u2
x + ρ2) dx = p dξ.

Consequently, relations (3.27)–(3.30) imply the weighted norm of a tangent vector (3.18) can
be written as

‖(w, v, %)‖(u,ρ) =
4∑
`=1

ˆ ∞
0
|J`(t, ξ)| dξ, (3.31)

where

J1 = (X + xξ ·
∂ξε

∂ε
|ε=0)(e−y(t,ξ)L+ p− L),

J2 = (U + uξ ·
∂ξε

∂ε
|ε=0)(e−y(t,ξ)L+ p− L),

J3 =
(
B + βξ ·

∂ξε

∂ε
|ε=0 + βL · ∂ξ

ε
x

∂ε
|ε=0

)
e−y(t,ξ),

J4 = P − L+ (pξ − Lξ) ·
∂ξε

∂ε
|ε=0 + (p− L)L · ∂ξ

ε
x

∂ε
|ε=0.

Since ξε equals to a constant in time along the characteristic, it is clear that the integrand J`
is continuous, for ` = 1, 2, 3, 4.

Now, we are ready to define the length of the piecewise regular path.

Definition 3.3. The length ‖γ2
t ‖ of the piecewise regular path γ2

t : θ 7→ (uθ, ρθ) is defined as

‖γ2
t ‖ = inf

γ2t

ˆ 1

0

4∑
`=1

ˆ ∞
0
|J θ` (t, ξ)| dξ dθ,

where the infimum is taken over all piecewise regular path.

At this stage, we have the following theorem, the proof is similar to Theorem 2.5 in Subsection
2.3.2, we omit it here for brevity.
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Theorem 3.5. Given any T > 0, consider a path of solutions θ 7→ (uθ, ρθ) of (3.1), which is
piecewise regular for t ∈ [0, T ]. Moreover, the total energy is less than a constant E2 > 0. Then
there exists some constant C > 0, such that

‖γ2
t ‖ ≤ C‖γ2

0‖,

where C depends only on T and H1(R+)× L2(R+)–norm of initial data.

3.3.3. Construction of the geodesic distance. In this sub–subsection, we are in a position to
show that the flow generated by the two–component Hunter–Saxton (3.1)–(3.3) is Lipschitz
continuous with respect to the geodesic distance defined in Definition 3.5. In light of Corollary
3.1, for an open dense set of initial data D ⊂ {(u0, ρ0);u0 ∈ C3(R+) ∩H1(R+), ρ0 ∈ C2(R+) ∩
L2(R+)}, the corresponding solution (u, ρ)(t, x) of (3.1) is piecewise smooth, with singularities
occurring in finitely many isolated points. Now, on D∞ :=

(
C∞0 × C∞0

)
∩ D, we construct a

geodesic distance, defined as the infimum among the weighted lengths of all piecewise regular
paths connecting two given points. Thus, by continuity, this distance can be extended from D∞
to a larger space, defined as the completion of D∞ with respect to the distance d2(·, ·).

Let two data (u, ρ), (û, ρ̂) ∈ D∞ be given, we introduce the quantities

E(u, ρ) :=

ˆ ∞
0

(u2
x + ρ2)(t, x) dx, E(û, ρ̂) :=

ˆ ∞
0

(û2
x + ρ̂2)(t, x) dx.

Then fix any constant E2 > 0, denote the set

ΣE2 := {u ∈ H1(R+), ρ ∈ L2(R+); E(u, ρ) ≤ E2}.

Definition 3.4. For solutions with initial data in D∞ ∩ ΣE2, we define the geodesic distance

d2

(
(u, ρ), (û, ρ̂)

)
as the infimum among the weighted lengths of all piecewise regular paths θ 7→

(uθ, ρθ), which connect (u, ρ) with (û, ρ̂), that is, for any time t,

d2

(
(u, ρ), (û, ρ̂)

)
:= inf{‖γ2

t ‖; γ2
t is a piecewise regular path, γ2

t (0) = (u, ρ),

γ2
t (1) = (û, ρ̂), E(uθ, ρθ) ≤ E2 for all θ ∈ [0, 1]}.

Now, we can define the metric for the general weak solutions.

Definition 3.5. Let (u0, ρ0) and (û0, ρ̂0) in H1(R+)×L1(R+) be two absolute continuous initial
data as required in the existence Theorem 3.1. Denote (u, ρ) and (û, ρ̂) to be the corresponding
global weak solutions, then we define, for any time t,

d2

(
(u, ρ), (û, ρ̂)

)
:= lim

n→∞
d2

(
(un, ρn), (ûn, ρ̂n)

)
,

for any two sequences of solutions (un, ρn) and (ûn, ρ̂n) in D∞ ∩ ΣE2 with

‖un − u‖H1 → 0, ‖ρn − ρ‖L2 → 0 and ‖ûn − û‖H1 → 0, |ρ̂n − ρ̂‖L2 → 0.

The limit in the definition is independent on the selection of sequences, because the solution
flows are Lipschitz in D∞∩ΣE2 , so the definition is well-defined. Since the concatenation of two
piecewise regular paths is still a piecewise regular path (after a suitable re–parameterization),
it is clear that d2(·, ·) is a distance. By the fact that D∞∩Σ is a dense set in the solution space,
one could easily extend the Lipschitz metric to the general initial data. As a consequence of
Theorem 3.5, we report directly the following result.

Theorem 3.6. The geodesic distance d2(·, ·) renders Lipschitz continuous the flow generated by
the equation (3.1). In particular, let (u0, ρ) and (û0, ρ̂0) be two H1(R+)× L2(R+) initial data,
then for every t ∈ [0, T ], the corresponding solutions (u, ρ)(t, x) and (û, ρ̂)(t, x) satisfy

d2

(
(u(t), ρ(t)), (û(t), ρ̂(t))

)
≤ Cd2

(
(u0, ρ0), (û0, ρ̂0)

)
,

where the constant C > 0 depends only on T and H1(R+)× L2(R+)–norm of initial data.
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Now, we compare the distance d2(·, ·) with the familiar distance in Sobolev space and the
Wasserstein distance between energy measure.

Proposition 3.1. (1) For any (u, ρ), (û, ρ̂) ∈ D∞ ∩ΣE2, there exists some positive constant C
depends only on E2, such that,

d2

(
(u, ρ), (û, ρ̂)

)
≤ C

(
‖u− û‖L∞ + ‖ux − ûx‖L2 + ‖ρ− ρ̂‖L2 + ‖ρ− ρ̂‖L1

)
. (3.32)

(2) For any u, û ∈ L1
loc(R+) ∩H1(R+) and ρ, ρ̂ ∈ L2(R+), there exists some constant C > 0

depends only on E2, such that,

‖u− û‖L1
loc
≤ C · d2

(
(u, ρ), (û, ρ̂)

)
, (3.33)

|meas λ−meas λ̂| ≤ d2

(
(u, ρ), (û, ρ̂)

)
, (3.34)

sup
‖f‖C1≤1

|
ˆ
f dµ−

ˆ
f dµ̂| ≤ d2

(
(u, ρ), (û, ρ̂)

)
, (3.35)

where λ, λ̂ are the measures with densities ρe−x and ρ̂e−x with respect to Lebesgue measure, and
µ, µ̂ are the measures with densities (ux)2 +ρ2 and (ûx)2 + ρ̂2 with respect to Lebesgue measure.

Proof. The estimates (3.32), (3.33) and (3.35) can be bounded similarly as in Proposition 2.1
and 2.2, respectively. It remains to show (3.34). Let γ2

t : θ 7→ (uθ, ρθ) be a regular path

connecting (u, ρ) with (û, ρ̂). Call λθ be the measure with density ρθe−x
θ

with respect to
Lebesgue measure, it is clear to see that

|
ˆ 1

0

d

dθ

ˆ
dλθ dθ| ≤

ˆ 1

0

ˆ ∞
0
|%θ + ρθxw

θ + ρθwθx|e−x dx dθ +

ˆ 1

0

ˆ ∞
0
|wθ|(e−xθ + (ρθ)2) dx dθ,

(3.36)

where the integrands on the right hand side of (3.36) are less than the integrands of I1 and I3

in (3.18). (3.34) holds immediately. This completes the proof of Proposition 3.1. �
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