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Abstract. We consider the Lipschitz continuous dependence of solutions for the Novikov equation
with respect to the initial data. In particular, we construct a Finsler type optimal transport metric
which renders the solution map Lipschitz continuous on bounded set of H1(R)∩W 1,4(R), although it
is not Lipschitz continuous under the natural Sobolev metric from energy law due to the finite time
gradient blowup. By an application of Thom’s transversality Theorem, we also prove that when
the initial data are in an open dense set of H1(R) ∩ W 1,4(R), the solution is piecewise smooth.
This generic regularity result helps us extend the Lipschitz continuous metric to the general weak
solutions.

1. Introduction

Many evolutionary partial differential equations (PDEs) have the general form

ut + Lu = 0, u(0) = u0.

Classical well-posedness theory suggests the existence of a continuous semigroup of solutions, at
least for a short time. For a large class of semi-linear PDEs, basic techniques such as Picard and
Duhamel iteration can be applied to obtain Lipschitz continuity of the semigroup, that is, for any
pair of solutions u, v, it holds

d

dt
‖u(t)− v(t)‖ . ‖u(t)− v(t)‖ (1.1)

for a suitable (Sobolev) norm. Typical examples include the Korteweg-de Vries (KdV) equation,
the nonlinear Schrödinger (NLS) equation, the semi-linear wave equation, and so on.

On the other hand, a noteworthy exception is provided by many quasi-linear equations. Due to
the dominating nonlinearity, the initial information of the data can determine the later dynamics
in a substantial way. In particular, solutions with smooth initial data can lose regularity in finite
time, and one cannot in general expect (1.1) to hold true under the natural energy norms.

In this paper, we would like to address the issue of the Lipschitz continuity of the flow map using
the following quasi-linear equation, namely the Novikov equation

ut − uxxt + 4u2ux = 3uuxuxx + u2uxxx. (1.2)

This equation was derived by Novikov [21] in a symmetry classification of nonlocal PDEs with cubic
nonlinearity, and can in some sense be related to the well-known Camassa-Holm equation [8, 12].
In fact writing the Novikov equation (1.2) in the weak form

ut + u2ux + ∂x(1− ∂2
x)−1

(
u3 +

3

2
uu2

x

)
+ (1− ∂2

x)−1

(
1

2
u3
x

)
= 0, (1.3)

one may recognize the similarities with the Camassa-Holm equation, which, in a nonlocal form,
reads

uT + uux + ∂x(1− ∂2
x)−1

(
u2 +

1

2
u2
x

)
= 0. (1.4)

Analytically, the Novikov equation also shares many properties in common with the Camassa-
Holm equation, among which the two most remarkable features are the breaking waves and peakons.
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From examining the weak formulation (1.3), a transport theory can be applied to derive the blow-
up criterion which asserts that singularities are caused by the focusing of characteristics. This in
combined with the H1-conservation of solutions indicates that the exact blow-up scenario is in the
sense of wave-breaking, i.e., the solution remains bounded but its slope becomes infinite in finite
time. Some results on this issue can be found, for instance, in [11, 18].

As an example, the wave-breaking phenomenon can also be manifested by the so-called multi-
peakon solutions. The Novikov multi-peakon solution takes the form

u(t, x) =

N∑
i=1

pi(t)e
|x−qi(t)| (1.5)

subject to the following equations of motion for the peak positions qi(t) and amplitudes pi(t) [16, 17]
q̇i =

N∑
j,k=1

pjpke
−|qi−qj |−|qi−qk|,

ṗi = pi

N∑
j,k=1

pjpksgn(qi − qj)e−|qi−qj |−|qi−qk|.
(1.6)

It can be seen that a single peakon always travels to the right since q̇i = u(qi)
2. Therefore for a

Novikov peakon pair, only over-taking collisions may take place [19], which differs from the Camass-
Holm case where head-on collisions are also possible. In a typical situation when two peakons of
anti-strength (p1p2 < 0) cross each other at time t∗, then as t→ t−∗ ,

p1(t)→ +∞ (or −∞), p2(t)→ −∞ (or +∞), p1(t) + p2(t)→ p∗,

q1(t), q2(t)→ q∗, q1(t) < q2(t) for t < t−∗ ,
(1.7)

for some p∗, q∗ ∈ R; see [19]. In particular we have ‖ux‖L∞ → ∞. In this case, one needs to be
careful with the meaning of continuing a solution beyond a collision.

In a recent work [9], we managed to find a way to uniquely extend the Novikov solution beyond
the point of collision, such as multi-peakon solutions, while keeping the “total energy” conserved.
Moreover, the result in [9] applies to the general case of continuing solution after wave-breaking.
Compared to the Camassa-Holm equation, the strong nonlinearity and nonlocal effects in the
Novikov equation necessitates the need to work in a higher regularity space. Thanks to a higher
order conservation law (2.7), which will serve as the “total energy”, one can close all the estimates
in H1(R) ∩W 1,4(R). This extra regularity enhancement also results in the exact conservation of
the H1 norm of solutions for all time, which is in contrast to the Camassa-Holm case, where there
are still possible concentration of u2

xdx [3, 4, 13]. In fact, the energy concentration in the Novikov
equation occurs at the level of u4

xdx.

1.1. Main result. Having established the existence and uniqueness of conservative solutions, our
main goal here is to show that these solutions form a continuous semigroup. Because of the
conservation laws (2.6)-(2.7), the H1(R) ∩ W 1,4(R) norm seems to be a natural metric for the
stability theory. However, the previous multi-peakon interaction reveals the opposite. From the
result of [9, Theorem 1.1], for each time t, we introduce the measure νt whose absolutely continuous
part with respect to Lebesgue measure has density u4 + 2u2u2

x − 1
3u

4
x. Consider a time t∗ when a

pair of peakons collide according to (1.7). Then as t→ t−∗ , νt converges weakly to some νt∗ which
contains a Dirac mass at the point q∗. The energy conservation implies thatˆ

R

(
u2 + u2

x

)
(t∗) dx = lim

t→t−∗

ˆ
R

(
u2 + u2

x

)
(t) dx,

ˆ
R

(
u4 + 2u2u2

x −
1

3
u4
x

)
(t∗) dx− νt∗({q∗}) = lim

t→t−∗

ˆ
R

(
u4 + 2u2u2

x −
1

3
u4
x

)
(t) dx.
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Therefore if we choose as from above a sequence of two-peakons of anti-strength uε defined by
uε = u(t− ε, x), then

lim
ε→0

(‖u(0)− uε(0)‖H1 + ‖u(0)− uε(0)‖W 1,4) = 0,

but

lim
ε→0

(
1

3
‖uεx(t∗)‖4L4 −

1

3
‖ux(t∗)‖4L4

)
= νt∗({q∗})− lim

ε→0

ˆ
R

[(
(uε)4 + 2(uε)2(uε)2

x

)
−
(
u4 + 2u2u2

x

)]
(t∗) dx = νt∗({q∗}) > 0.

(1.8)

Therefore the flow is clearly discontinuous with respect to the W 1,4 norm. Numerical evidence
verifying (1.8) is given in the Section 8.

A further message one can take from this example is that the main obstacle in establishing the
Lipschitz continuous dependence on initial data lies in the concentration phenomenon of certain
energy density due to possible focusing of wave fronts; see Figure 1.

uε(0) u(0) uε(t) u(t)

x

Figure 1. A sketch of the solution u to the Novikov equation and a small pertur-
bation uε. Here uε is a backward shift of u. At time t → t−∗ , both u4

x and (uεx)4

approach to the delta functions, and hence the W 1,4 distance becomes large. A
nature choice is a transport metric!

Similar situation occurs in a number of other quasilinear equations, including the Hunter-Saxton
equation, the Camassa-Holm equation, and the nonlinear variational wave equation. A class of
optimal transport metrics was constructed to determine the minimum cost to transport an energy
measure from one solution to the other, such that the corresponding flow map remains uniformly
Lipschitz on bounded time intervals for this new geodesic distance; see [2, 6, 7, 14, 15]. Compared
with the previous literature, the major difficulty in dealing with the Novikov equation lies in the fact
that equation (1.2) exhibits cubic nonlinearity, which requires one to work in a stronger regularity
space, and therefore changes the energy concentration nature. Hence one needs to accordingly
adjust terms in the metric of the infinitesimal tangent vectors. On the other hand, two complicated
non-local convolution terms make the Lipschitz estimate fairly subtle.

The main theorem in this paper can be stated as:

Theorem 1.1. The geodesic distance d, defined in Definition 5.3, renders Lipschitz continuous the
flow generated by the equation (2.1). In particular, consider two initial data u0(x) and ũ0(x) which
are absolute continuous and belong to H1(R) ∩W 1,4(R). Then for any T > 0, the corresponding
solutions u(t, x) and ũ(t, x) satisfy

d
(
u(t), ũ(t)

)
≤ C d(u0, ũ0),

when t ∈ [0, T ], where the constant C depends only on T and H1(R) ∩W 1,4(R)–norm of initial
data.

1.2. Structure of the article. We construct the metric d and prove that the solution map is
Lipschitz continuous under this metric in several steps.

1. We construct a Lipschitz metric for smooth solution (Sections 3).
2. We prove by an application of the Thom’s Transversality theorem that the piecewise smooth

solutions with only generic singularities are dense in H1 ∩W 1,4 (Section 4).
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3. We first extend the Lipschitz metric to piecewise smooth solutions with only generic sin-
gularities, and then to general weak solution by the “density” result established in Step 2
(Section 5).

4. We compare our metric with other metrics, such as the Sobolev metric and Kantorovich-
Rubinstein or Wasserstein metric (Section 6).

A more detailed explanation is given below.

Step 1: Metric for smooth solutions. We begin, in Section 2, by collecting several important local
and global conservation laws of equation (1.2), which motivates the definition of an energy conser-
vative solution. Then we recall the main theorem on the existence and uniqueness of such solutions
established in [9], cf. Theorem 2.1.

To keep track of the cost of the energy transportation, we are led to construct the geodesic
distance. That is, for two given solution profiles u(t) and uε(t), we consider all possible smooth
deformations/paths γt : θ 7→ uθ(t) for θ ∈ [0, 1] with γt(0) = u(t) and γt(1) = uε(t), and then
measure the length of these paths through integrating the norm of the tangent vector dγt/dθ; see
Figure 2 (a). The distance between u and uε will be calculated by the optimal path length

d (u(t), uε(t)) = inf
γt
‖γt‖ := inf

γt

ˆ 1

0
‖vθ(t)‖uθ(t) dθ, where vθ(t) =

dγt

dθ
.

u1(t) = uε(t)

u0(t) = u(t)

uθ(t)vθ(t)

θx

u

u1(T ) = uε(T )

u0(T ) = u(T )

vθ(T ) =??

θx

u

(a) Method of homotopy (b) Loss of regularity

Figure 2. Compare two solutions u(x) and uε(x) at a given time t.

Here the subscript uθ(t) emphasizes the dependence of the norm on the flow u.
The next step is to define a Finsler norm for an infinitesimal tangent vector, by measuring the

cost (with energy density µ) in shifting from one solution to the other one. From Figure 3, in
measuring the cost of transporting u to uε on the x-u plane, we notice that the tangent flow v
only measures the vertical displacement (dashed arrow) between two solutions. In order to provide
enough freedom for planar transports, one needs to add a quantity, named as w, to measure the
(horizontal) shift on x. It is nature to consider both vertical and horizontal shifts (solid arrows) in
the energy space to estimate the cost of transport.

With this in mind,, the cost function basically includes

‖(w, v̂)‖u =

ˆ
R
{[horizontal shift] + [vertical shift] + [change in u]} dµ

+

ˆ
R

[change in the base measure with density µ] dx,

(1.9)

where, for example, as shown in Figure 3, it follows from Taylor’s expansion that

[change in u] = o(ε) order of (uε(xε)− u(x)) = v̂ = v(x) + ux(x)w(x). (1.10)
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u

uε

εv

x

uε(x) = u(x) + εv(x) + o(ε)
u

uε

x xε

εv̂

uε(xε) = u(x) + ε(v + uxw)(x) + o(ε)

(a) (b)

Figure 3. A sketch of how to deform from u to uε: (a) a vertical shift εv; (b) a
horizontal shift εuxw followed by a vertical displacement εv. We denote the total
shift as εv̂ = ε(v + uxw) as in (1.10). Here xε := x+ εw(x).

A more detailed description is given in Section 3.
This way for an infinitesimal tangent vector v, we can accordingly define its Finsler norm to be

‖v‖u = inf
w∈A
‖(w, v̂)‖u, with v̂ = v + uxw,

where the admissible set A (defined in (3.7)) involves information of the characteristics of the
equation that helps select the “reasonable” transports.

The explicit definition of the Finsler norm is provided in (3.8) and (3.9). The next thing we do
is to investigate how this norm of the tangent vector propagates in time along any solution. The
key estimate on the growth of the norm of the tangent vector is given in Lemma 3.1.

The implication of Lemma 3.1 is that, for any T > 0, if all solutions uθ(t, ·) are sufficiently
regular for t ∈ [0, T ], such that the tangent vectors are well-defined on γt, then it holds that

‖γt‖ ≤ C‖γ0‖ ∀ t ∈ [0, T ], (1.11)

where C only depends on the total energy of the initial data. Therefore it is natural to define the
geodesic distance

d (u, uε) := inf
{
‖γt‖; γt : [0, 1]→ H1 ∩W 1,4, γt(0) = u, γt(1) = uε

}
,

and one can expect from (1.11) that the solution map is Lipschitz continuous under this metric.

Step 2: Generic regularity. However, smooth solutions do not always remain smooth for all time.
In fact for the Novikov equation (1.2), the gradient of the solution can blow up in finite time, and
therefore a smooth path of initial data γ0 may lose regularity at later time T so that the tangent
vector dγT /dt may not be well-defined (see Figure 2 (b)); even if it does exist, it is not obvious that
the estimate (1.11) should remain valid. The idea is to show that there are sufficiently many paths
which are initially smooth, and remain (piecewise) smooth later in time. We prove in Section 4

Theorem 1.2. Let T > 0 be given, then there exists an open dense set

D ⊂
(
C3(R) ∩H1(R) ∩W 1,4(R)

)
,

such that, for u0 ∈ D, the conservative solution u = u(t, x) of (2.1) is twice continuously differen-
tiable in the complement of finitely many characteristic curves, within the domain [0, T ]× R.

The generic regularity is itself of great interest because it shows very detailed structures of
singularities. As a consequence, in Corollary 4.1, we prove the existence of regular paths connecting
any two solutions of Theorem 1.2.

Similar generic regularity result was first established for the variational wave equation [1] and
used in establishing a Lipschitz metric in [2]. This idea was applied to the Camassa-Holm equation
in [20]. The proof of Theorem 1.2 relies on an application of Thom’s Transversality Theorem.



6 H. CAI, G. CHEN, R. M. CHEN, AND Y. SHEN

Step 3: Metric for general weak solutions. For general weak solutions, we first use the semi-linear
system established in [9] to extend the Lipschitz metric from smooth solutions to piecewise smooth
solutions, cf. Theorem 5.1, Definition 5.1 and Definition 5.2. In the second step, we generalize
this metric on the space H1(R)∩W 1,4(R) and prove the Lipschitz property. This step is now very
nature because the set of regular paths, that are roughly speaking piecewise smooth solutions, is a
dense set of the solution space.

Step 4: Compare with other metrics. See details in Section 6.

Remark 1.1. Currently, there are several parallel techniques in constructing the Lipschitz metrics.
These include: the Finsler distance used in this paper (first established in [1, 2] for variational
wave equation); method in [14, 15] for Camassa-Holm equation, which uses semi-linear equations
on Lagrangian coordinates; and a direct transport method in [6] combing a convergence argument
from multi-peakon solutions.

Notice that, since we mainly work on the original coordinates and do not need the existence of
sufficiently many special solutions such as multi-peakon solutions, our way to construct the metric
is quite transparent and robust, as long as one has good knowledge about the energy concentration.
In Section 7, we also apply this method to the Camassa-Holm equation, and the computation for
the key estimates is greatly simplified.

We also point out at the end of the article that the semi-linear system introduced in [9] can be
successfully implemented to simulate the peakon interactions. This is usually considered to be a
quite challenging problem. Most of the current methods treat directly the ODEs governing the
dynamics of peakons. Yet to the authors’ knowledge, no schemes have been proposed to realize
the energy concentration exactly at the collision time. This is largely due to the blow-up of the
momentum density when two peakons collide. Here we take advantage of the semi-linear system
in [9] which makes use of a set of new variables that dilates the interacting characteristics and in
particular, allows one to trace the behavior of peakons even at the instant of collision. We present
in Section 8 several numerical experiments to both showcase explicitly the energy concentration of
a peakon-antipeakon interaction, and the merits of using our scheme. Our method can be easily
employed to other integrable system to analyze the peakon interactions.

2. Preliminary results

In this section we recall some useful estimates and the existence and uniqueness of global con-
servative solution of the Novikov equation. For more details the reader can refer to [9].

First we rewrite the Cauchy problem for the Novikov equation (1.2) as{
ut + u2ux + ∂xP1 + P2 = 0,

u(0, x) = u0(x),
(2.1)

where

P1 := p ∗
(

3

2
uu2

x + u3

)
, P2 :=

1

2
p ∗
(
u3
x

)
, (2.2)

with p = 1
2e
−|x| being the Green’s function for (1− ∂2

x)−1 on R.
For smooth solutions, differentiating equation (2.1) with respect to x we have

uxt + u2uxx +
1

2
uu2

x − u3 + P1 + ∂xP2 = 0. (2.3)
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Further manipulation leads to the following local conservation laws(
u2 + u2

x

2

)
t

+

(
u2u2

x

2
+ uP1 + u∂xP2

)
x

= 0, (2.4)(
u4 + 2u2u2

x −
1

3
u4
x

)
t

+

(
2u4u2

x −
1

3
u2u4

x +
4

3
u3(P1 + ∂xP2)

)
x

+
4

3

(
(P1 + ∂xP2)2 − (P2 + ∂xP1)2

)
x

= 0,

(2.5)

which indicates two conserved quantities

E(t) =

ˆ
R

(u2 + u2
x)(t, x) dx = E(0), (2.6)

F(t) =

ˆ
R

(u4 + 2u2u2
x −

1

3
u4
x)(t, x) = F(0) dx. (2.7)

Therefore we can bound

‖u‖2L∞ ≤ ‖u‖2H1 = E(0),

‖ux‖4L4 = 3

ˆ
R

(u4 + 2u2u2
x) dx− 3F(t) ≤ 3

(
2E(0)2 −F(0)

)
,

which in turn implies that

‖ux‖3L3 ≤
√

3E(0)
(
2E(0)2 −F(0)

)
=: K. (2.8)

Now, we are able to bound Pi(t) and the derivatives ∂Pi for i = 1, 2 as follows.

‖P1(t)‖L∞ , ‖∂xP1(t)‖L∞ ≤ ‖p‖L∞‖
3

2
uu2

x + u3‖L1 ≤
3

4
E(0)

3
2 ,

‖P1(t)‖L2 , ‖∂xP1(t)‖L2 ≤ ‖p‖L2‖
3

2
uu2

x + u3‖L1 ≤
3

2
√

2
E(0)

3
2 ,

‖P2(t)‖L∞ , ‖∂xP2(t)‖L∞ ≤
1

2
‖p‖L∞‖u3

x‖L1 ≤
1

4
K,

‖P2(t)‖L2 , ‖∂xP2(t)‖L2 ≤
1

2
‖p‖L2‖u3

x‖L1 ≤
1

2
√

2
K.

(2.9)

Now we state the theorem on the existence and uniqueness of conservative solutions to the
Cauchy problem (2.1).

Theorem 2.1 ([9]). Let u0 ∈ H1(R) ∩ W 1,4(R) be an absolute continuous function. Then the
Cauchy problem (2.1) admits a unique energy conservative solution u(t, x) defined for all (t, x) ∈
R+ × R in the following sense.

(i) For any fixed t ≥ 0, u(t, ·) ∈ H1(R)∩W 1,4(R). The map t→ u(t, ·) is Lipschitz continuous
under the L4(R) metric.

(ii) The solution u = u(t, x) satisfies the initial condition of (2.1) in L4(R), and¨
Λ

{
−ux

(
φt + u2 φx) +

(
−3

2
uu2

x − u3 + P1 + ∂xP2

)
φ

}
dx dt+

ˆ
R
u0,xφ(0, x) dx = 0 (2.10)

for every test function φ ∈ C1
c (Λ) with Λ =

{
(t, x)

∣∣∣ t ∈ [0,∞), x ∈ R
}

.

(iii) There exists a family of Radon measures {µt, t ∈ R+}, depending continuously on time and
w.r.t the topology of weak convergence of measures. For every t ∈ R+, the absolutely con-
tinuous part of µt with respect to the Lebesgue measure has density u4

x(t, ·), which provides
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a measure-valued solution to the balance lawˆ
R+

{ˆ
(φt + u2φx)dµt +

ˆ (
4u3u3

x − 4u3
x(P1 + ∂xP2)

)
φdx

}
dt−

ˆ
R
u4

0,xφ(0, x)dx = 0, (2.11)

for every test function φ ∈ C1
c (Λ).

Moreover, the solution also satisfies the following properties.

(1) u(t, x) is Hölder continuous with exponent 3/4 on both t and x.
(2) The first energy density u2 + u2

x is conserved for any time t ≥ 0, i.e.

E(t) = ‖u(t)‖2H1 = ‖u0‖2H1 for any t ≥ 0; (2.12)

(3) The second energy density u4 + 2u2u2
x − 1

3u
4
x is conserved in the following sense.

(a) An energy inequality is satisfied:

F(t) =

ˆ
R

(
u4 + 2u2u2

x −
1

3
u4
x

)
(t, x) dx ≥ F(0) for any t ≥ 0. (2.13)

(b) Denote a family of Radon measures {νt, t ∈ R+}, such that

νt(A) =

ˆ
A

(
u4 + 2u2u2

x

)
(t, x) dx− 1

3
µt(A)

for any Lebesgue measurable set A in R. Then for any t ∈ R+,

νt(R) = ν0(R) = F(0) =

ˆ
R

(
u4 + 2u2u2

x −
1

3
u4
x

)
(0, x) dx.

For any t ∈ R+, the absolutely continuous part of νt with respect to Lebesgue measure
has density u4 + 2u2u2

x − 1
3u

4
x. For almost every t ∈ R+, the singular part of νt is

concentrated on the set where u = 0.
(4) A continuous dependence result holds. Consider a sequence of initial data u0n such that
‖u0n − u0‖H1∩W 1,4 → 0, as n→∞. Then the corresponding solutions un(t, x) converge to
u(t, x) uniformly for (t, x) in any bounded sets.

3. The norm of tangent vector for smooth solutions

To illustrate the ideas on how to construct the Lipschitz metric, in this section we first consider
smooth solutions to (2.1). We take a family of perturbed solutions uε(x) to (2.1), which can be
written as

uε(x) = u(x) + εv(x) + o(ε). (3.1)

Here in this section, we make an abuse of notation of using f(t) or f(x) to denote a function f(t, x).
A straightforward calculation yields that the first order perturbation v satisfies

vt + u2vx + 2uvux +
1

2

(ˆ ∞
x
−
ˆ x

−∞

)
e−|x−y|

(
3uyvyu+

3

2
u2
yv + 3u2v

)
dy

+
3

4

ˆ ∞
−∞

e−|x−y|u2
yvy dy = 0.

(3.2)

Differentiating (3.2) with respect to x, one obtains

vxt + u2vxx + uuxvx +
1

2
u2
xv + 2uvuxx − 3u2v +

1

2

ˆ
R
e−|x−y|

(
3uyvyu+

3

2
u2
yv + 3u2v

)
dy

+
3

4

(ˆ ∞
x
−
ˆ x

−∞

)
e−|x−y|u2

yvy dy = 0.

(3.3)
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As explained in Section 1.2, to obtain enough freedom in measuring the shift from one solution
to the other one, we need to add a quantity w(t, x) measuring the horizontal shift:

xε := x+ εw(x) + o(ε). (3.4)

To focus only on reasonable transports between two solutions, we select w(t, x) by propagating
along characteristics the shifts w0(x) as the initial data. That is, we require that when x(t) is a
characteristic emanating from x0 then xε(t) is also a characteristic emanating from xε0, so

d

dt
xε(t) = (uε(xε))2 when

d

dt
x(t) = u2(x).

Thus, using (3.1), (3.4) and taking the limit as ε→ 0, we have

wt + u2wx = 2u(v + uxw). (3.5)

So the Finsler norm on the space of infinitesimal tangent vector v takes the form

‖v‖u := inf
w∈A
‖(w, v̂)‖u, with v̂ = v + uxw, (3.6)

where the admissible set is defined as

A = {solutions w(t, x) of (3.5) with smooth initial data w0(x)} . (3.7)

Note that u is always smooth in this section, hence in (3.5) w can be solved with a given initial
data w(0, x) = w0(x).

To motivate the explicit construction of ‖(w, v)‖u, we consider a reference solution u together
with a perturbation uε, as shown in Figure 3. Recall that we are interested in determining the cost
of transporting the energy (with density µ ≈ u4

x) from u to uε. In fact we will choose µ = (1+u2
x)2,

and the cost should account for the following

‖(w, v̂)‖u =

ˆ
R
{[change in x] + [change in u] + [change in arctanux]} (1 + u2

x)2e−|x| dx

+

ˆ
R

[change in the base measure with density (1 + u2
x)2]e−|x| dx

=: I1 + I2 + I3 + I4 .

(3.8)

More precisely, we have

‖v‖u = inf
w∈A

ˆ
R

{
|w|(1 + u2

x)2 + |v + uxw|(1 + u2
x)2 + |vx + uxxw|(1 + u2

x)

+|4(ux + u3
x)(vx + uxxw) + (1 + u2

x)2wx|
}
e−|x| dx

=: inf
w∈A

(I1 + I2 + I3 + I4) .

(3.9)

We note that when u ∈ L1, the e−|x| term is not necessary. Below we briefly explain how to obtain
(3.9), using (3.1) and (3.4).

• For [change in x] in I1,

1

ε
[xε − x] = w + o(ε).

• For [change in u] in I2,

1

ε
[uε(xε)− u(x)] = v(x) + ux(x)w(x) + o(ε).
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• For [change in arctanux] in I3,

arctanuεx(xε) = arctan [ux(xε) + εvx(xε) + o(ε)]

= arctan [ux(x) + εw(x)uxx(x) + εvx(x) + o(ε)]

= arctanux(x) + ε
vx(x) + w(x)uxx(x)

1 + u2
x(x)

+ o(ε).

• For [change in the base measure with density (1 + u2
x)2] in I4, using the following identities

(uεx(xε))2 = u2
x(xε) + 2εux(xε)vx(xε) + o(ε)

= u2
x(x) + 2εw(x)ux(x)uxx(x) + 2εvx(x)ux(x) + o(ε),

we obtain that(
1 + (uεx(xε))2

)2
dxε −

(
1 + u2

x(x)
)2
dx =

(
4ε(vx + wuxx)(ux + u3

x) + εwx(1 + u2
x)2 + o(ε)

)
dx.

Next we want to understand how this norm of the tangent vector changes in time. The main
result of this section is the following.

Lemma 3.1. Let T > 0 be given, and u(t, x) be a smooth solution to (2.1) when t ∈ [0, T ]. Assume
that the first order perturbation v satisfies equation (3.2). Then it follows that

‖v(t)‖u(t) ≤ C(T )‖v(0)‖u(0), (3.10)

for some constant C(T ) depending only on initial total energy E(0), F(0) and T .

Proof. It suffices to show that

d

dt
‖(w(t), v(t))‖u(t) ≤ C ‖(w(t), v(t))‖u(t) , (3.11)

for any v and w satisfying (3.2), (3.3) and (3.5). Here C is a constant depending only on the initial
energy E(0) and F(0). In rest of this paper, unless specified, we will use C to denote a constant
depending on the initial energy E(0), F(0).

To prove (3.11), first, notice that for any smooth function f , we have

d

dt

ˆ
R
|f |e−|x| dx

=

ˆ
R

(|f |e−|x|)t + (u2|f |e−|x|)x dx

=

ˆ
R

sign(f)[ft + (u2f)x]e−|x| dx−
ˆ ∞

0
u2|f |e−xdx+

ˆ 0

−∞
u2|f |exdx

≤
ˆ
R
|ft + (u2f)x|e−|x| dx+ ‖u‖2L∞

ˆ
R
|f |e−|x|dx.

Therefore in the following we only have to show that |ft+(u2f)x|e−|x| is bounded by the integrands
in I1 + I2 + I3 + I4, with f being w(1 + u2

x)2, (v + uxw)(1 + u2
x)2, (vx + uxxw)(1 + u2

x) and
4(ux + u3

x)(vx + uxxw) + (1 + u2
x)2wx, respectively.

To simplify the computation, we drop all the e−|x| terms (this can be thought of as assuming
that the solution has compact support). In the general case, the same results remain valid when

the factor e−|x| is inserted back.

1. For I1 in (3.9), it follows from a direct computation that(
(1 + u2

x)2
)
t
+
(
u2(1 + u2

x)2
)
x

= (u3
x + ux)(4u3 − 4(P1 + ∂xP2) + 2u). (3.12)
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By (3.5) and (3.12), we have

(
w(1 + u2

x)2
)
t
+
(
u2w(1 + u2

x)2
)
x

= (wt + u2wx)(1 + u2
x)2 + w

[(
(1 + u2

x)2
)
t
+
(
u2(1 + u2

x)2
)
x

]
= 2u(v + uxw)(1 + u2

x)2 + w(u3
x + ux)

(
4u3 − 4(P1 + ∂xP2) + 2u

)
.

(3.13)

This in turn yields the estimate

dI1

dt
=

d

dt

ˆ
R
|w|(1 + u2

x)2 dx ≤ C
ˆ
R
|v + uxw|(1 + u2

x)2 dx+ C

ˆ
R
|w|(1 + u2

x)2 dx

≤ C(I1 + I2).

(3.14)

2. The estimates for the second and third terms are much more delicate. For I2, from (2.3),
(3.2), (3.5) and (3.12), we obtain

(
(v + uxw)(1 + u2

x)2
)
t
+
(
u2(v + uxw)(1 + u2

x)2
)
x

=
[
vt + u2vx + ux(wt + u2wx) + w

(
uxt + u2uxx

)]
(1 + u2

x)2

+ (v + uxw)
[(

(1 + u2
x)2
)
t
+
(
u2(1 + u2

x)2
)
x

]
=

[
−1

2

(ˆ ∞
x
−
ˆ x

−∞

)
e−|x−y|

(
3uyvyu+

3

2
u2
yv + 3u2v

)
dy − 3

4

ˆ ∞
−∞

e−|x−y|u2
yvy dy

−2uvux + 2uux(v + uxw) + w

(
−uu

2
x

2
+ u3 − P1 − ∂xP2

)]
(1 + u2

x)2

+ (v + uxw)(u3
x + ux)

(
4u3 − 4(P1 + ∂xP2) + 2u

)
=

[
−1

2

(ˆ ∞
x
−
ˆ x

−∞

)
e−|x−y|

(
3uyvyu+

3

2
u2
yv + 3u2v

)
dy − 3

4

ˆ ∞
−∞

e−|x−y|u2
yvy dy

+
3

2
uu2

xw + w(u3 − P1 − ∂xP2)

]
(1 + u2

x)2 + (v + uxw)(u3
x + ux)(4u3 − 4(P1 + ∂xP2) + 2u)

=: (I21 + I22 + I23 + I24)(1 + u2
x)2 + (v + uxw)(u3

x + ux)(4u3 − 4(P1 + ∂xP2) + 2u).
(3.15)

For the local term I23 = 3
2uu

2
xw(x), we have

I23 =− 1

2

(ˆ ∞
x
−
ˆ x

−∞

)(
e−|x−y|

3

2
uu2

yw

)
y

dy

=− 1

2

(ˆ ∞
x
−
ˆ x

−∞

)
e−|x−y|

(
3uuyuyyw +

3

2
u3
yw +

3

2
uu2

ywy

)
dy

+
3

4

ˆ ∞
−∞

e−|x−y|uu2
yw dy.
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Hence

I21 + I23

= −1

2

(ˆ ∞
x
−
ˆ x

−∞

)
e−|x−y|

[
3uuy(vy + uyyw) +

3

2
uu2

ywy +
3

2
u2
y(v + uyw) + 3u2v

]
dy

+
3

4

ˆ ∞
−∞

e−|x−y|uu2
yw dy

= −1

2

(ˆ ∞
x
−
ˆ x

−∞

)
e−|x−y|

{
3

2
u
[
4uy(vy + uyyw) + (1 + u2

y)wy
]
− 3uuy(vy + uyyw)

−3

2
(uw)y +

3

2
uyw +

3

2
u2
y(v + uyw) + 3u2v

}
dy +

3

4

ˆ ∞
−∞

e−|x−y|uu2
yw dy

= −1

2

(ˆ ∞
x
−
ˆ x

−∞

)
e−|x−y|

{
3

2
u
[
4uy(vy + uyyw) + (1 + u2

y)wy
]
− 3uuy(vy + uyyw)

+
3

2
uyw +

3

2
u2
y(v + uyw) + 3u2v

}
dy − 3

4

(ˆ ∞
x
−
ˆ x

−∞

)
∂e−|x−y|

∂y
uw dy

− 3

2
uw(x) +

3

4

ˆ ∞
−∞

e−|x−y|uu2
yw dy

= −1

2

(ˆ ∞
x
−
ˆ x

−∞

)
e−|x−y|

{
3

2
u
[
4uy(vy + uyyw) + (1 + u2

y)wy
]
− 3uuy(vy + uyyw)

+
3

2
uyw +

3

2
u2
y(v + uyw) + 3u2v

}
dy +

3

4

ˆ ∞
−∞

e−|x−y|(uw + uu2
yw) dy − 3

2
uw(x).

Note that

3u2v(y) = 3u2(v + uyw)− 3u2uyw,

which, together with the previous equality and the Sobolev inequality, implies that∣∣∣∣ˆ
R

(I21 + I23)(1 + u2
x)2 dx

∣∣∣∣
≤ C

ˆ
R

(ˆ
R
e−|x−y|(1 + u2

x)2 dx

)[∣∣∣∣32u (4uy(vy + uyyw) + (1 + u2
y)wy

)∣∣∣∣
+ |3uuy(vy + uyyw)|+ 3

2
|uyw|+

3

2
|u2
y(v + uyw)|+ 3|u2(v + uyw)|+ 3|u2uyw|

+
3

4
|uw|+ 3

4
|uu2

yw|
]
dy + C

ˆ
R
|w|(1 + u2

x)2 dx

≤ C
ˆ
R

∣∣4ux(vx + uxxw) + (1 + u2
x)wx

∣∣ (1 + u2
x) dx+ C

ˆ
R
|w|(1 + u2

x)2 dx

+ C

ˆ
R
|vx + uxxw|(1 + u2

x) dx+ C

ˆ
R
|v + uxw|(1 + u2

x)2 dx

≤ C(I4 + I1 + I3 + I2),

(3.16)

where we have used the fact thatˆ
R
e−|x−y|(1 + u2

x)2 dx ≤
ˆ
R
e−|x−y| dx+ 2

ˆ
R
u2
x dx+

ˆ
R
u4
x dx ≤ C.

For the second term I22, we have

3u2
yvy = 3u2

y(vy + uyyw)− 3u2
yuyyw = 3u2

y(vy + uyyw)− (u3
yw)y + u3

ywy.
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The last term can be bounded as

u3
ywy ≤ |(1 + u2

y)uywy| ≤ |4u2
y(vy + uyyw) + (1 + u2

y)uywy|+ |4u2
y(vy + uyyw)|

≤ C|4uy(vy + uyyw) + (1 + u2
y)wy|(1 + u2

y) + |4u2
y(vy + uyyw)|.

(3.17)

Then it holds that

∣∣∣∣34
ˆ
R

ˆ
R
e−|x−y|u2

yvy dy(1 + u2
x)2 dx

∣∣∣∣
≤ C

ˆ
R

(ˆ
R
e−|x−y|(1 + u2

x)2 dx

)(
|u2
y(vy + uyyw)|+ |4uy(vy + uyyw) + (1 + u2

y)wy|(1 + u2
y)
)
dy

+ C

∣∣∣∣ˆ
R

(ˆ
R
e−|x−y|(u3

yw)y dy

)
(1 + u2

x)2 dx

∣∣∣∣ (3.18)

≤ C
ˆ
R
|vx + uxxw|(1 + u2

x) dx+ C

ˆ
R

∣∣4ux(vx + uxxw) + (1 + u2
x)wx

∣∣ (1 + u2
x) dx

+ C

ˆ
R

ˆ
R

∣∣∣∣∣∂e−|x−y|∂y

∣∣∣∣∣ (1 + u2
x)2 dx · |u3

yw| dy

≤ C(I3 + I4 + I1).

Plugging (3.16) and (3.18) into (3.15), we can conclude that

dI2

dt
=

d

dt

ˆ
R
|v + uxw|(1 + u2

x)2 dx ≤ C(I1 + I2 + I3 + I4). (3.19)

3. To estimate the time derivative of I3, using (2.3), (3.3) and (3.5) we obtain

(
(vx + uxxw)(1 + u2

x)
)
t
+
(
u2(vx + uxxw)(1 + u2

x)
)
x

=
[
vxt + u2vxx + uxx(wt + u2wx) + w(uxxt + u2uxxx)

]
(1 + u2

x)

+ (vx + uxxw)
[
(1 + u2

x)t +
(
u2(1 + u2

x)
)
x

]
=

[
−uuxvx −

1

2
u2
xv − 2uvuxx + 3u2v − 1

2

ˆ ∞
−∞

e−|x−y|(3uyvyu+
3

2
u2
yv + 3u2v) dy

− 3

4

(ˆ ∞
x
−
ˆ x

−∞

)
e−|x−y|u2

yvy dy + 2uuxx(v + uxw) + w(3u2ux − 3uuxuxx

− ∂xP1 − P2)
]
(1 + u2

x) + (vx + uxxw)
[
2u3ux − 2ux(P1 + ∂xP2) + uu3

x + 2uux
]

=

[
−1

2
u2
xv + 3u2(v + uxw)− 1

2

ˆ ∞
−∞

e−|x−y|(3uyvyu+
3

2
u2
yv + 3u2v) dy

−3

4

(ˆ ∞
x
−
ˆ x

−∞

)
e−|x−y|u2

yvy dy − w(∂xP1 + P2)

]
(1 + u2

x)

+ (vx + uxxw)
[
2u3ux − 2ux(P1 + ∂xP2) + uux

]
.

(3.20)
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Note that

−1

2
u2
xv = −1

2
u2
x(v + uxw) +

1

2
u3
xw

= −1

2
u2
x(v + uxw)− 1

2

(ˆ ∞
x
−
ˆ x

−∞

)(
e−|x−y|

1

2
u3
yw(y)

)
y

dy

= −1

2
u2
x(v + uxw) +

1

4

ˆ ∞
−∞

e−|x−y|u3
yw dy

− 1

4

(ˆ ∞
x
−
ˆ x

−∞

)
e−|x−y|(3u2

yuyyw + u3
ywy) dy.

From the above inequality and (3.17), the first and fourth terms in the last equality of (3.20) can
be estimated as∣∣∣∣ˆ

R

{
−1

2
u2
xv −

3

4

(ˆ ∞
x
−
ˆ x

−∞

)
e−|x−y|u2

yvy(y) dy

}
(1 + u2

x) dx

∣∣∣∣
=

∣∣∣∣−1

2

ˆ
R
u2
x(v + uxw)(1 + u2

x) dx+
1

4

ˆ
R

ˆ
R
e−|x−y|u3

yw dy(1 + u2
x) dx

−1

4

ˆ
R

(ˆ ∞
x
−
ˆ x

−∞

)
e−|x−y|[3u2

y(vy + uyyw) + u3
ywy] dy(1 + u2

x) dx

∣∣∣∣
≤ C

ˆ
R
|v + uxw|(1 + u2

x)2 dx+
1

4

ˆ
R

(ˆ
R
e−|x−y|(1 + u2

x) dx

)
|u3
yw| dy

+ C

ˆ
R

(ˆ
R
e−|x−y|(1 + u2

x) dx

)[
|vy + uyyw|(1 + u2

y) (3.21)

+|4uy(vy + uyyw) + (1 + u2
y)wy|(1 + u2

y) + |4u2
y(vy + uyyw)|

]
dy

≤ C
ˆ
R
|v + uxw|(1 + u2

x)2 dx+ C

ˆ
R
|vx + uxxw|(1 + u2

x) dx

+ C

ˆ
R
|w|(1 + u2

x)2 dx+ C

ˆ
R
|4ux(vx + uxxw) + (1 + u2

x)wx|(1 + u2
x) dx

≤ C(I2 + I3 + I1 + I4).

On the other hand, for the third term in the last equality of (3.20), we notice that

3uyvyu = 3uuy(vy + uyyw)− 3uuyuyyw

= 3uuy(vy + uyyw)− 3

2

(
uu2

yw
)
y

+
3

2
u3
yw +

3

2
uu2

ywy,
(3.22)

and

3

2
uu2

ywy ≤
3

4

∣∣u(1 + u2
y)uywy

∣∣
≤ 3

4
|u| ·

∣∣(1 + u2
y)uywy + 4u2

y(vy + uyyw)
∣∣+ 3|u| ·

∣∣u2
y(vy + uyyw)

∣∣
≤ C|u| ·

∣∣(1 + u2
y)wy + 4uy(vy + uyyw)

∣∣ (1 + u2
y) + 3|u| ·

∣∣u2
y(vy + uyyw)

∣∣ .
(3.23)
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Thus, by (3.22), (3.23) and integration by parts, we bound the third term in the following way.

1

2

∣∣∣∣ˆ
R

(ˆ
R
e−|x−y|(3uyvyu+

3

2
u2
yv + 3u2v) dy

)
(1 + u2

x) dx

∣∣∣∣
≤ C

ˆ
R

(ˆ
R
e−|x−y|(1 + u2

x) dx

){
3|uuy(vy + uyyw)|+ 3|u||u2

y(vy + uyyw)|

+ |u|
∣∣(1 + u2

y)wy + 4uy(vy + uyyw)
∣∣ (1 + u2

y) +
3

2
|u2
y(v + uyw)|

+3|u2(v + uyw)|+ 3|u2uyw|
}
dy + C

ˆ
R

ˆ
R

∣∣∣∣∣∂e−|x−y|∂y

∣∣∣∣∣ (1 + u2
x) dx · |uu2

yw| dy

≤ C
ˆ
R
|vx + uxxw|(1 + u2

x) dx+ C

ˆ
R
|w|(1 + u2

x)2 dx (3.24)

+ C

ˆ
R
|4ux(vx + uxxw) + (1 + u2

x)wx|(1 + u2
x) dx+ C

ˆ
R
|v + uxw|(1 + u2

x)2 dx

≤ C(I3 + I1 + I4 + I2).

Plugging (3.21) and (3.24) into (3.20), it holds that

dI3

dt
=

d

dt

ˆ
R
|vx + uxxw|(1 + u2

x) dx ≤ C(I1 + I2 + I3 + I4). (3.25)

4. To estimate the time derivative of I4, differentiating (3.5) with respect to x we get

wtt + u2wxx = 2ux(v + uxw) + 2u(vx + uxxw). (3.26)

Using (2.3), (3.3), (3.5), (3.12) and (3.26), it holds that

(
4(ux + u3

x)(vx + uxxw) + (1 + u2
x)2wx

)
t
+
(
u2
(
4(ux + u3

x)(vx + uxxw) + (1 + u2
x)2wx

))
x

= 4
[
(1 + 3u2

x)(uxt + u2uxx) + 2uu2
x(1 + u2

x))
]

(vx + uxxw) + 4
[
vxt + u2vxx + uxx(wt + u2wx)

+w(uxxt + u2uxxx)
]

(ux + u3
x) + (1 + u2

x)2(wxt + u2wxx) + wx
[(

(1 + u2
x)2
)
t
+
(
u2(1 + u2

x)2
)
x

]
= 4

[
(1 + 3u2

x)

(
−1

2
uu2

x + u3 − P1 − ∂xP2

)
+ 2uu2

x(1 + u2
x))

]
(vx + uxxw)

+ 4(ux + u3
x)

[
−uuxvx −

1

2
u2
xv − 2uvuxx + 3u2v − 1

2

ˆ
R
e−|x−y|(3uyvyu+

3

2
u2
yv + 3u2v) dy

−3

4

(ˆ ∞
x
−
ˆ x

−∞

)
e−|x−y|u2

yvy dy + 2uuxx(v + uxw) + w
(
3u2ux − 3uuxuxx − ∂xP1 − P2

)]
+ (1 + u2

x)2 [2ux(v + uxw) + 2u(vx + uxxw)] + wx(u3
x + ux)

[
4u3 − 4(P1 + ∂xP2) + 2u

]
=
[
6uu2

x + 2u+ 4(1 + 3u2
x)
(
u3 − P1 − ∂xP2

)]
(vx + uxxw) + 2ux(1 + u2

x)
[
v + ux(1 + u2

x)w
]

− 3(ux + u3
x)

(ˆ ∞
x
−
ˆ x

−∞

)
e−|x−y|u2

yvy dy + 4(ux + u3
x)
[
3u2(v + uxw)− w(∂xP1 + P2)

−1

2

ˆ
R
e−|x−y|(3uyvyu+

3

2
u2
yv + 3u2v) dy

]
+ wx(u3

x + ux)
[
4u3 − 4(P1 + ∂xP2) + 2u

]
.
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For the second and third terms in the last equality, we have

2ux(1 + u2
x)
[
v + ux(1 + u2

x)w
]
− 3(ux + u3

x)

(ˆ ∞
x
−
ˆ x

−∞

)
e−|x−y|u2

yvy dy

= −ux(1 + u2
x)

(ˆ ∞
x
−
ˆ x

−∞

)[(
e−|x−y|

(
v + uy(1 + u2

y)w
))

y
+ 3e−|x−y|u2

yvy

]
dy

= −ux(1 + u2
x)

(ˆ ∞
x
−
ˆ x

−∞

)
e−|x−y|

(
vy + uyyw + 3u2

y(vy + uyyw) + uy(1 + u2
y)wy

)
dy

+ ux(1 + u2
x)

ˆ
R
e−|x−y|

(
v + uy(1 + u2

y)w
)
dy

= −ux(1 + u2
x)

(ˆ ∞
x
−
ˆ x

−∞

)
e−|x−y|

[
vy + uyyw + 4u2

y(vy + uyyw) + uy(1 + u2
y)wy

−u2
y(vy + uyyw)

]
dy + ux(1 + u2

x)

ˆ
R
e−|x−y|

(
v + uyw + u3

yw
)
dy.

(3.27)

While for the last term,

wx(u3
x + ux)(4u3 − 4(P1 + ∂xP2) + 2u)

=
(
4u3 − 4(P1 + ∂xP2) + 2u

) [
wx(u3

x + ux) + 4u2
x(vx + uxxw)− 4u2

x(vx + uxxw)
]
.

(3.28)

Finally, the term −2(ux+u3
x)
´∞
−∞ e

−|x−y|(3uyvyu+ 3
2u

2
yv+3u2v)(y) dy can be estimated in a similar

way as is done to obtain (3.24). We thus conclude from all of the above that

dI4

dt
=

d

dt

ˆ
R

∣∣4(ux + u3
x)(vx + uxxw) + (1 + u2

x)2wx
∣∣ dx ≤ C(I1 + I2 + I3 + I4). (3.29)

Combining the inequalities (3.14), (3.19), (3.25) and (3.29) together, we obtain the desired
inequality (3.11), and hence (3.10). �

4. Generic regularity for the Novikov equation: Proof of Theorem 1.2.

In this section, we use the Thom’s transversality Theorem to prove generic regularity result given
in Theorem 1.2.

4.1. The semi-linear system on new coordinates. As a start, we first briefly review the
semi-linear system introduced in [9], which will be used later. Please find detail calculations and
derivations in [9].

Following the idea in [9], we introduce new coordinates (t, Y ), such that

Y ≡ Y (t, x) :=

ˆ xc(0;t,x)

0
(1 + u2

x(0, x′))2 dx′,

where a 7→ xc(a; t, x) denotes a characteristic passing through the point (t, x). Here the equation
of characteristic is

dx(t)

dt
= u2(t, x(t)).

In fact, Y = Y (t, x) is a characteristic coordinate, which satisfies Yt + u2Yx = 0 for any (t, x) ∈
R+ × R. We also denote

α = 2 arctanux and ξ =
(1 + u2

x)2

Yx
, (4.1)
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then one can derive a semi-linear system
ut(t, Y ) = −∂xP1 − P2,

αt(t, Y ) = −u sin2 α
2 + 2u3 cos2 α

2 − 2 cos2 α
2 (P1 + ∂xP2),

ξt(t, Y ) = ξ[(2u3 + u)− 2(P1 + ∂xP2)] sinα.

(4.2)

Here the initial conditions given as
u(0, Y ) = u0(x(0, Y )),

α(0, Y ) = 2 arctanu0,x(x(0, Y )),

ξ(0, Y ) = 1,

(4.3)

where

P1(Y ) =
1

2

ˆ ∞
−∞

e−|
´ Y
Ȳ (ξ cos4 α

2
)(t,Ỹ ) dỸ |

(
3

8
u sin2 α+ u3 cos4 α

2

)
ξ(t, Ȳ ) dȲ ,

∂xP1(Y ) =
1

2

(ˆ ∞
Y
−
ˆ Y

−∞

)
e−|
´ Y
Ȳ (ξ cos4 α

2
)(t,Ỹ ) dỸ |

(
3

8
u sin2 α+ u3 cos4 α

2

)
ξ(t, Ȳ ) dȲ ,

P2(Y ) =
1

8

ˆ ∞
−∞

e−|
´ Y
Ȳ (ξ cos4 α

2
)(t,Ỹ ) dỸ |

(
ξ sinα sin2 α

2

)
(t, Ȳ ) dȲ ,

∂xP2(Y ) =
1

8

(ˆ ∞
Y
−
ˆ Y

−∞

)
e−|
´ Y
Ȳ (ξ cos4 α

2
)(t,Ỹ ) dỸ |(ξ sinα sin2 α

2

)
(t, Ȳ ) dȲ .

(4.4)

By expressing the solution u(t, Y ) in terms of the original variables (t, x), one obtains a weak
solution of the Cauchy problem (2.1) as stated in Theorem 2.1. Furthermore, this solution is proved
to be the unique conservative solution in [9]. Indeed, the following result is also proved in [9].

Lemma 4.1. Let (x, u, α, ξ)(t, Y ) be the solution to the system (4.2)–(4.3) with ξ > 0. Then the
set of points

Graph(u) = {(t, x(t, Y ), u(t, Y )) : (t, Y ) ∈ R+ × R} (4.5)

is the graph of a unique conservative solution to the Novikov equation (2.1).

4.2. Families of perturbed solutions. To begin with, we state the following technical lemma
(cf. [20]) which will be used later.

Lemma 4.2. Consider an ODE system

d

dt
uε = f(uε), uε(0) = u0 + ε1v1 + · · ·+ εmvm,

where uε(t) : R→ Rn, f is a Lipschitz continuous function. The system is well-posed in [0, t∗). Let
the matrix

Dεu
ε(0) = (v1,v2, · · · ,vm) ∈ Rn×m,

have rank rank (Dεu
ε(0)) = k. Then for any t ∈ [0, t∗),

rank (Dεu
ε(t)) = k.

Now, for a fixed solution of (4.2), we are going to construct several families of perturbed solutions.

Lemma 4.3. Let (u, α, ξ) be a smooth solution of the semi-linear system (4.2) and let a point
(t0, Y0) ∈ R+ × R be given.

(1) If (α, αY , αY Y )(t0, Y0) = (π, 0, 0), then there exists a 3–parameter family of smooth solutions
(uϑ, αϑ, ξϑ) of (4.2), depending smoothy on ϑ ∈ R3, such that the following holds.

(i) when ϑ = 0 ∈ R3, one recovers the original solution, namely (u0, α0, ξ0) = (u, α, ξ).
(ii) At the point (t0, Y0), when ϑ = 0 one has

rank Dϑ(αϑ, αϑY , α
ϑ
Y Y ) = 3. (4.6)
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(2) If (α, αY , αt)(t0, Y0) = (π, 0, 0), then there exists a 3–parameter family of smooth solutions
(uϑ, αϑ, ξϑ) of (4.2), depending smoothy on ϑ ∈ R3, satisfying (i)–(ii) as above, with (4.6) replaced
by

rank Dϑ(αϑ, αϑY , α
ϑ
t ) = 3. (4.7)

Proof. Let (u, α, ξ) be a smooth solution of the semi-linear system (4.2). Given the point (t0, Y0).
Taking derivatives to the equations of α and ξ in (4.2), we have

∂

∂t
αY (t, Y ) = uY (6u2 cos2 α

2
− sin2 α

2
)− αY sinα(

1

2
u+ u3 − P1 − ∂xP2)

− 2 cos2 α

2
ξ
(

cos4 α

2
(∂xP1 + P2)− 1

4
sin2 α

2
sinα

)
,

(4.8)

∂

∂t
αY Y (t, Y ) = uY Y (6u2 cos2 α

2
− sin2 α

2
)− αY uY sinα(1 + 6u2)

− (αY Y sinα+ α2
Y cosα)(

1

2
u+ u3 − P1 − ∂xP2)

+ αY ξ sinα
(
4 cos4 α

2
(∂xP1 + P2)− 1

2
sin2 α

2
sinα

)
− 2 cos2 α

2
ξY
(

cos4 α

2
(∂xP1 + P2)− 1

4
sin2 α

2
sinα

)
− 2 cos6 α

2
ξ2
(

cos4 α

2
(P1 + ∂xP2 − u3)− 3

8
u sin2 α

)
+

1

4
cos2 α

2
αY ξ

(
sin2 α+ 2 sin2 α

2
cosα

)
,

(4.9)

∂

∂t
αt(t, Y ) = (∂xP1 + P2)(sin2 α

2
− 6u2 cos2 α

2
)− 2 cos2 α

2
(∂tP1 + ∂t∂xP2)

− sinα
(
− u sin2 α

2
+ 2u3 cos2 α

2
− 2 cos2 α

2
(P1 + ∂xP2)

)
(
1

2
u+ u3 − P1 − ∂xP2),

(4.10)

∂

∂t
ξY (t, Y ) = (ξY sinα+ ξαY cosα)

(
2u3 + u− 2(P1 + ∂xP2)

)
+ ξ sinα

(
6u2uY + uY − 2ξ cos4 α

2
(∂xP1 + P2) +

1

2
ξ sinα sin2 α

2

)
,

(4.11)

with

uY (t, Y ) =
1

2
ξ sinα cos2 α

2
, uY Y =

1

2
ξY sinα cos2 α

2
+

1

2
ξαY cosα cos2 α

2
− 1

4
ξαY sin2 α.

Combining (4.2), (4.8), (4.9) and (4.11), we obtain a complete system. Now, we construct a family
of solutions (ūϑ, ᾱϑ, ξ̄ϑ) to the complete system (4.2), (4.8), (4.9) and (4.11) with initial data being
the perturbations of (4.3) 

ūϑ(0, Y ) = u(0, Y ) +
∑

i=1,2,3

ϑiUi(Y ),

ᾱϑ(0, Y ) = α(0, Y ) +
∑

i=1,2,3

ϑiVi(Y ),

ξ̄ϑ(0, Y ) = ξ(0, Y ) +
∑

i=1,2,3

ϑiζi(Y ),

(4.12)
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for some suitable functions Ui, Vi, ζi ∈ C∞0 (R). That is, consider the system

∂

∂t



ūϑ

ᾱϑ

ξ̄ϑ

ᾱϑY
ᾱϑY Y
ξ̄ϑY

 =


fϑ1
fϑ2
fϑ3
fϑ4
fϑ5
fϑ6

 ,

with the initial data (4.12), where fϑ1 , · · · , fϑ6 are the perturbations of the right-hand side of (4.2),
(4.8), (4.9) and (4.11). Thanks to Lemma 4.2, it remains to prove the Lipschitz continuity of
fϑ1 , · · · , fϑ6 . Observe that (u, α, ξ) is smooth, so we just need to consider the Lipschitz continuity
of Pj and ∂xPj for j = 1, 2. From the definition of the source term Pj at (4.4), it follows∣∣∣∣∂P1

∂u
(t, Y )

∣∣∣∣ =
1

2
|
ˆ ∞
−∞

e−|
´ Y
Ȳ (ξ cos4 α

2
)(t,Ỹ ) dỸ |(3

8
sin2 α+ 3u2 cos4 α

2

)
ξ(t, Ȳ ) dȲ |

≤ 1

2

ˆ ∞
−∞

e−|x−x̄|(
3

2
u2
x + 3u2)(t, x̄) dx̄ ≤ 3

2
E(0).

Similarly, by (2.6) and (4.4), we can obtain∣∣∣∣∂P1

∂α
(t, Y )

∣∣∣∣ ≤ 1

2

ˆ ∞
−∞

e−|
´ Y
Ȳ (ξ cos4 α

2
)(t,Ỹ ) dỸ ||

ˆ Y

Ȳ
(ξ cos2 α

2
sinα)(t, Ỹ ) dỸ |

· |3
8
u sin2 α+ u3 cos4 α

2

)
|ξ(t, Ȳ ) dȲ

+
1

2

ˆ ∞
−∞

e−|
´ Y
Ȳ (ξ cos4 α

2
)(t,Ỹ ) dỸ ||3

4
u sinα cosα− u3 cos2 α

2
sinα|ξ(t, Ȳ ) dȲ

≤ 1

2

ˆ ∞
−∞

e−|x−x̄||2
ˆ x

x̄
ux(t, x̃) dx̃||(3

2
uu2

x + u3)(t, x̄)| dx̄

+
1

2

ˆ ∞
−∞

e−|x−x̄||(3

2
uux −

3

2
uu3

x − 2u3ux)(t, x̄)| dx̄

≤
ˆ ∞
−∞

e−|x−x̄||x− x̄|
1
2E(0)

1
2 |(3

2
uu2

x + u3)(t, x̄)| dx̄+
3

4
‖u‖L2‖ux‖L2

+
3

4
‖u‖L∞‖ux‖L3 + ‖u‖2L∞‖u‖L2‖ux‖L2

≤ 3
√

2

2
E(0)

3
2 +

3

4
E(0) +

3

4
E(0)

1
2K

1
3 + 2E(0)2,

where K is defined in (2.8). In a similar fashion as the above two estimates and the fact that ξ

is bounded, it is easy to verify the boundedness of |∂P2
∂u |, |

∂P2
∂α |,

∂Pj
∂ξ |, |∂u∂xPj |, |∂α∂xPj |, |∂ξ∂xPj | for

j = 1, 2. This completes the proof of the Lipschitz continuity of fϑ1 , · · · , fϑ6 .
Thus, by choosing suitable perturbations Vi, i = 1, 2, 3, at the point (t0, Y0) and ϑ = 0, using

Lemma 4.2, we can get

rank Dϑ

 α
αY
αY Y

 = 3.

On the other hand, (4.2), (4.8) and (4.10) form a complete system. Similar to the proof of (4.6),
we can choose suitable perturbations Vi, i = 1, 2, 3, such that, at the point (t0, Y0) and ϑ = 0, we
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have

rank Dϑ

 α
αY
αt

 = 3.

This completes the proof of Lemma 4.3. �

4.3. Proof of Theorem 1.2. Now, we will use Lemma 4.3 together with Transversality argument
to study the smooth solutions to the semi-linear system (4.2), and hence determine the generic
structure of the level sets {(t, Y );α(t, Y ) = π}. The proof of the following lemma is similar to [20],
and we omit it here for brevity.

Lemma 4.4. Let a compact domain

Ω := {(t, Y ); 0 ≤ t ≤ T, |Y | ≤M},

and define S to be the family of all C2 solutions (u, α, ξ) to the semi-linear system (4.2), with ξ > 0
for all (t, Y ) ∈ R+ × R. Moreover, define S′ ⊂ S to be the subfamily of all solutions (u, α, ξ), such
that for (t, Y ) ∈ Ω, none of the following values is attained:

(α, αY , αY Y ) = (π, 0, 0), (α, αY , αt) = (π, 0, 0). (4.13)

Then S′ is a relatively open and dense subset of S, in the topology induced by C2(Ω).

With the help of Lemma 4.4, we can now prove Theorem 1.2 for the generic regularity of con-
servative solutions to the Novikov equation (2.1).

Proof of Theorem 1.2. First, we denote

N := C3(R) ∩H1(R) ∩W 1,4(R),

with norm

‖u0‖N := ‖u0‖C3 + ‖u0‖H1 + ‖u0‖W 1,4 .

Given initial data û0 ∈ N and denote the open ball

Bδ := {u0 ∈ N ; ‖u0 − û0‖N < δ}.

Now, we will prove our theorem by showing that, for any û0 ∈ N , there exists a radius δ > 0
and an open dense subset D̃ ⊂ Bδ, with the following property: for every initial data u0 ∈ D̃, the
conservative solution u = u(t, x) of (2.1) is twice continuously differentiable in the complement of
finitely many characteristic curves within the domain [0, T ]× R.

1. Since u0 ∈ N , by the definition of the space N , we have

u0(x)→ 0 and u0,x(x)→ 0, as |x| → ∞.

Thus, we can choose r > 0 sufficiently large, such that u0(x) and u0,x(t, x) being uniformly bounded
for all |x| ≥ r. On a domain of the form {(t, x); t ∈ [0, T ], |x| ≥ r+T‖u‖2L∞}, a standard comparison
argument yields that the partial derivative ux remains uniformly bounded. This implies that the
singularities of u(t, x) in the set [0, T ] × R only appear on the compact set M := [0, T ] × [−r −
T‖u‖2L∞ , r + T‖u‖2L∞ ].

Next, for any u0 ∈ Bδ, let Λ be the map (t, Y ) 7→ Λ(t, Y ) := (t, x(t, Y )), and let Ω be a domain
as in Lemma 4.4. Choosing M large enough and by possibly shrinking the radius δ, we can obtain
the inclusion M⊂ Λ(Ω).

Now, the subset D̃ ⊂ Bδ is defined as follows. u0 ∈ D̃ if u0 ∈ Bδ and for the corresponding
solution (u, α, ξ) of (4.2), the values (4.13) are never attained for any (t, Y ) such that (t, x(t, Y )) ∈
M. In the next two steps, we examine D̃ is an open dense set.
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2. To prove that the set D̃ is open in the topology of C3, we choose a sequence of initial data
(uν0)ν≥1 such that the sequence converges to u0, with uν0 /∈ D̃. By the definition of D̃, there exist
points (tν , Y ν) at which the corresponding solutions (uν , αν , ξν) satisfy

(αν , ανY , α
ν
Y Y )(tν , Y ν) = (π, 0, 0), (tν , xν(tν , Y ν)) ∈M,

for all ν ≥ 1. Observe that the domain M is compact, thus we can choose a subsequence, denote
still by (tν , Y ν), such that (tν , Y ν)→ (t̄, Ȳ ) for some point (t̄, Ȳ ). By continuity,

(α, αY , αY Y )(t̄, Ȳ ) = (π, 0, 0), (t, x(t̄, Ȳ )) ∈M,

which implies u0 /∈ D̃. Repeating the same procedure when (α, αY , αT ) = (π, 0, 0), it follows that

D̃ is open.
3. Now, we will prove the set D̃ is dense in Bδ. Given u0 ∈ Bδ, by a small perturbation, we can

assume that u0 ∈ C∞.
From Lemma 4.4, we can construct a sequence of solutions (uν , αν , ξν) of (4.2), such that, for

every ν ≥ 1, (t, Y ) ∈ Ω, the values in (4.13) are never attained, and the Ck, k ≥ 1 norm satisfies

lim
ν→∞

‖(uν − u, αν − α, ξν − ξ, xν − x)‖Ck(Γ) = 0,

for every bounded set Γ ⊂ [0, T ]× R. Thus, for t = 0, the corresponding sequence of initial values
satisfies

lim
ν→∞

‖uν0 − u0‖Ck(I) = 0, (4.14)

for every bounded set I ⊂ R.
Consider a cutoff function ψ(x) ∈ C∞0 , such that

ψ(x) = 1, if |x| ≤ l,
ψ(x) = 0, if |x| ≥ l + 1,

where l� r + T‖u‖2L∞ is large enough. Then for every ν ≥ 1, define the following initial data

ũν0 := ψuν0 + (1− ψ)u0,

which together with (4.14) implies

lim
ν→∞

‖ũν0 − u0‖N = 0.

Further enlarge l such that for every (t, x) ∈M,

ũν(t, x) = uν(t, x).

Notice that ũν(t, x) remains C2 in the outer domain {(t, x); t ∈ [0, T ], |x| ≥ r + T‖u‖2L∞}. Thus,

we have proved for every ν ≥ 1 sufficiently large, ũν0 ∈ D̃, which means that D̃ is dense in Bδ.

4. Finally, we will show that for every initial data u0 ∈ D̃, the corresponding solution u(t, x) of
(2.1) is piecewise C2 on the domain [0, T ] × R. Indeed, we know that u is C2 in the outer domain
{(t, x); t ∈ [0, T ], |x| ≥ r+T‖u‖2L∞} by the previous argument. So we need to study the singularity
of u in the inner domain M.

Recall from step 1, every point inM is contained in the image of the domain Ω. Thus, for every
point (t0, Y0) ∈ Ω, we have two cases.

Case I. α(t0, Y0) 6= π. From the coordinate change xY = ξ cos4 α
2 , t = t, we know that the map

(t, Y ) 7→ (t, x) is locally invertible in a neighborhood of (t0, Y0). Therefore, the function u is C2 in
a neighborhood of (t0, x(t0, Y0)).

Case II. α(t0, Y0) = π. Since u0 ∈ D̃, so by the definition of D̃, we have αt(t0, Y0) 6= 0 or
αY (t0, Y0) 6= 0.

5. By continuity, there exists an η > 0, such that the values in (4.13) are never attained in the
open neighborhood

Ω′ := {(t, Y ); 0 ≤ t ≤ T, |Y | ≤M + η}.
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Applying the implicit function theorem, we derive that the set

Sα := {(t, Y ) ∈ Ω′; α(t, Y ) = π}
is a one-dimensional embedded manifold of class C2.

Now, we claim that the number of connected components of Sα that intersect the compact set
Ω is finite. Assume, by contradiction, that P1, P2, · · · is a sequence of points in Sα ∩ Ω belonging
to distinct components. Thus, we can choose a subsequence Pi, such that Pi → P̄ for some
P̄ ∈ Sα ∩ Ω. By assumption, (αt, αY )(P̄ ) 6= (0, 0). Hence, by the implicit function theorem, there
is a neighborhood U of P̄ such that γ := Sα ∩ U is a connected C2 curve. Thus, Pi ∈ γ for i large
enough, providing a contradiction.

6. To complete the proof, we need to study in more detail the image of the singular set Sα, since
the set of points (t, x) where u is singular coincides with the image of the set Sα under the C2 map
(t, Y ) 7→ Λ(t, Y ) = (t, x(t, Y )).

By the argument in step 5, inside the compact set Ω, there are only finitely many points where
α = π, αY = 0, αt 6= 0, say Pi = (ti, Yi), i = 1, · · · ,m, and also where α = π, αt = 0, αY 6= 0, say
Q = (t′, Y

′
 ),  = 1, · · · , n.

By the analysis in step 5, the set Sα\{P1, · · · , Pm, Q1, · · · , Qn} has finitely many connected
components which intersect Ω. Consider any one of these components. This is a connected curve,
say γj , such that α = π, αY 6= 0 for any (t, Y ) ∈ γj . Thus, this curve can be expressed in the form

γj = {(t, Y ) : Y = φj(t), aj < t < bj},
for a suitable function φj .

At this stage, we claim that the image Λ(γj) is a C2 curve in the t–x plane. Indeed, it suffices
to show that, on the open interval (aj , bj), the differential of the map t 7→ (t, x(t, φj(t))) does not
vanish. This is true, because

d

dt
x(t, φj(t)) = 1 + xY φ

′
j = 1 > 0,

since xY = ξ cos4 α
2 = 0 when α = π. Hence, the singular set Λ(Sα) is the union of the finitely many

points pi = Λ(Pi), i = 1, · · · ,m, q = Λ(Q),  = 1, · · · , n, together with finitely many C2–curve
Λ(γj). This completes the proof of Theorem 1.2. �

4.4. One-parameter families of solutions. In this subsection, we study families of conservative
solutions uθ = u(t, x, θ) of (2.1) with initial data u(0, x, θ) = u0(x, θ), depending smoothly on an
additional parameter θ ∈ [0, 1], More precisely, these paths of initial data will lie in the space

X := C3
(
R× [0, 1]

)
∩ L∞

(
[0, 1];H1(R) ∩W 1,4(R)

)
.

Now, we have the following generic regularity for one-parameter family of solution. Roughly speak-
ing, for a one-parameter family of initial data θ 7→ ûθ0, with θ ∈ [0, 1], it can be uniformly approxi-
mated by a second path of initial data θ 7→ uθ0, such that the corresponding solutions uθ = uθ(t, x)
of (2.1) are piecewise smooth in the domain [0, T ] × R. The proof is similar to [1], and hence we
omit it here for brevity. Note that this is the step where Thom’s Transversality Theorem is used.
We refer the reader to [1] for the Thom’s Transversality Theorem.

Theorem 4.1. Let T > 0 be given, then for any one-parameter family of initial data ûθ0 ∈ X and
any ε > 0, there exists a perturbed family (x, θ) 7→ u0(x, θ) =: uθ0(x) such that

‖uθ0 − ûθ0‖X < ε,

and moreover, for all except at most finitely many θ ∈ [0, 1], the conservative solution uθ = u(t, x, θ)
of (2.1) is smooth in the complement of finitely many points and finitely many C2 curves in the
domain [0, T ]× R.

In accordance with the previous argument, we give the following definitions.
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Definition 4.1. We say that a solution u = u(t, x) of (2.1) has generic singularities for t ∈ [0, T ]
if it admits a representation of the form (4.5), where

(i) the functions (x, u, α, ξ)(t, Y ) are C∞,
(ii) for t ∈ [0, T ], the generic condition

α = π, αY = 0 =⇒ αt 6= 0, αY Y 6= 0, (4.15)

holds.

Definition 4.2. We say that a path of initial data γ0 : θ 7→ uθ0, θ ∈ [0, 1] is a piecewise regular
path if the following conditions hold

(i) There exists a continuous map (Y, θ) 7→ (x, u, α, ξ) such that the semi-linear system (4.2)–(4.3)
holds for θ ∈ [0, 1], and the function uθ(x, t) whose graph is

Graph (uθ) = {(t, x(t, Y, θ), u(t, Y, θ)); (t, Y ) ∈ R+ × R}
provides the conservation solution of (2.1) with initial data uθ(0, x) = uθ0(x).

(ii) There exist finitely many values 0 = θ0 < θ1 < · · · < θN = 1 such that the map (Y, θ) 7→
(x, u, α, ξ) is C∞ for θ ∈ (θi−1, θi), i = 1, · · · , N , and the solution uθ = uθ(t, x) has only generic
singularities at time t = 0.

In addition, if for all θ ∈ [0, 1]\{θ1, · · · , θN}, the solution uθ has generic singularities for t ∈
[0, T ], then we say that the path of solution γt : θ 7→ uθ is piecewise regular for t ∈ [0, T ].

An application of Theorem 4.1 gives the following density result.

Corollary 4.1. Given T > 0, let θ 7→ (xθ, uθ, αθ, ξθ), θ ∈ [0, 1], be a smooth path of solutions to
the system (4.2)–(4.3). Then there exists a sequence of paths of solutions θ 7→ (xθn, u

θ
n, α

θ
n, ξ

θ
n), such

that
(i) For each n ≥ 1, the path of the corresponding solution of (2.1) θ 7→ uθn is regular for t ∈ [0, T ]

in the sense of Definition 4.2.
(ii) For any bounded domain Ω in the (t,Y ) space, the functions (xθn, u

θ
n, α

θ
n, ξ

θ
n) converge to

(xθ, uθ, αθ, ξθ) uniformly in Ck([0, 1]× Ω), for every k ≥ 1, as n→∞.

5. Metric for general weak solutions

In this section, we will first extend the Lipschitz metric for smooth solutions in Section 3 to
piecewise smooth solutions, and then to general weak solutions using the generic regularity result
established in Theorem 1.2. Through this Theorem 1.1 can be achieved.

5.1. Tangent vectors in transformed coordinates. For a reference solution u(t, x) of (2.1)
and a family of perturbed solutions uε(t, x), we assume that, in the (t,Y ) coordinates, these define
a family of smooth solutions of (4.2)–(4.3), denoted by (xε, uε, αε, ξε).

Consider the perturbed solutions of the form

(xε, uε, αε, ξε) = (x, u, α, ξ) + ε(X,U,A, ζ) + o(ε). (5.1)

Since the coefficients of (4.2)–(4.3) are smooth, we have that the first order perturbations satisfy
a linearized system and are well defined for (t, Y ) ∈ R+ × R. In the following, we will express the
quantities in (3.9) in terms of (X,U,A, ζ).

(1) The shift in x is computed by

w = lim
ε→0

xε(t, Y ε)− x(t, Y )

ε
= X + xY ·

∂Y ε

∂ε

∣∣∣∣
ε=0

. (5.2)

(2) The change in u is

v + uxw = lim
ε→0

uε(t, Y ε)− u(t, Y )

ε
= U + uY ·

∂Y ε

∂ε

∣∣∣∣
ε=0

. (5.3)
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(3) For the change in arctanux, it holds that

vx + uxxw =
d

dε
tan

αε(t, Y ε)

2
|ε=0 =

1

2
sec2 α

2

(
A+ αY ·

∂Y ε

∂ε

∣∣∣∣
ε=0

)
. (5.4)

(4) Finally, we will derive an expression for the term I4 in (3.9).

d

dε
(ξε(t, Y ε) + ξxY Y

ε
x )

∣∣∣∣
ε=0

= ζ + ξY ·
∂Y ε

∂ε

∣∣∣∣
ε=0

+ ξxY ·
∂Y ε

x

∂ε

∣∣∣∣
ε=0

, (5.5)

where the change in the base measure with density (1 + u2
x)2 is given by

d

dε
ξε
∣∣∣∣
ε=0

= lim
ε→0

ξε(t, Y ε)− ξ(t, Y )

ε
= ζ + ξY ·

∂Y ε

∂ε

∣∣∣∣
ε=0

.

Notice that

(1 + u2
x)2 dx = ξ dY.

In light of (5.2)–(5.5), the weighted norm of a tangent vector (3.9) can be written as

‖(w, v)‖u =
4∑
`=1

ˆ
R
|J`(t, Y )| dY, (5.6)

where

J1 =

(
X + xY ·

∂Y ε

∂ε

∣∣∣∣
ε=0

)
ξe−|x(t,Y )|, J2 =

(
U + uY ·

∂Y ε

∂ε

∣∣∣∣
ε=0

)
ξe−|x(t,Y )|,

J3 =
1

2

(
A+ αY ·

∂Y ε

∂ε

∣∣∣∣
ε=0

)
ξe−|x(t,Y )|, J4 =

(
ζ + ξY ·

∂Y ε

∂ε

∣∣∣∣
ε=0

+ ξxY ·
∂Y ε

x

∂ε

∣∣∣∣
ε=0

)
e−|x(t,Y )|.

Since Y ε(t) = Y ε(0) along the characteristic, it is easy to verify that the integrands J` are smooth,
for ` = 1, 2, 3, 4.

5.2. Length of piecewise regular paths. Now we define the length of the piecewise regular path
by optimizing over all transportation plans, namely,

Definition 5.1. The length ‖γt‖ of the piecewise regular path γt : θ 7→ uθ(t) is defined as

‖γt‖ = inf
γt

ˆ 1

0

4∑
`=1

ˆ
R
|Jθ` (t, Y )| dY dθ,

where the infimum is taken over all piecewise regular paths.

Our main result in this section is stated as follows.

Theorem 5.1. Given any T > 0, consider a path of solutions θ 7→ uθ of (2.1), which is piecewise
regular for t ∈ [0, T ]. Moreover, the total energy ‖uθ‖2H1 and the norm ‖uθx‖4L4 is less than some
constants E1 > 0 and E2 > 0, respectively . Then there exists some constant C > 0, such that the
length satisfies

‖γt‖ ≤ C‖γ0‖, (5.7)

where the constant C depends only on T,E1 and E2.

Proof. By the definition of piecewise regular paths, we know that uθ has generic regularities for
every θ ∈ [0, 1]\{θ1, · · · , θN}. So the solution uθ is smooth in the t-Y coordinates and piecewise
smooth in the t-x coordinates, thus the existence of the tangent vector is obvious.
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1. We claim that, for θ ∈ [0, 1]\{θ1, · · · , θN}, if we have

‖vθ(t)‖uθ(t) ≤ eC1t‖vθ(0)‖uθ(0), (5.8)

then (5.7) holds. Here the constant C1 depends only on the upper bound of the total energies.
Indeed, according to the definition of the length of a piecewise regular path, fix ε > 0, there

exists some Y , such that, at time t = 0,
ˆ 1

0

4∑
`=1

ˆ
R
|Jθ` (0, Y )| dY dθ ≤ ‖γ0‖+ ε.

Thus, integrating (5.8) over the interval θ ∈ [0, 1], it holds that

‖γt‖ ≤ C2(‖γ0‖+ ε),

which implies (5.7), since ε > 0 is arbitrary.
2. Therefore in the following, we will concentrate on proving (5.8). If uθ is smooth in the (t, x)
variables, in light of (3.10), (5.8) follows directly. Thus, it suffices to show that the same result can
be applied if uθ is piecewise smooth with generic singularities.

We first note that there exist at most finitely many points Qj = (tj , Yj), j = 1, · · · , N on which

αθ = π, αθY = 0, when t ∈ [0, T ] . In fact, using the implicit function theorem and the generic

condition (4.15), we know that each point Q with αθ = π and αθY = 0 is isolated from other Q′s in
a small neighborhood. Then it follows that there exist at most finite many points Qj by applying
a finite covering argument on the bounded region including all possible singularities (the existence
of such a bounded region is shown in Part 1 of the proof of Theorem 1.2 in Section 4.3.).

Now, for each time t = tj corresponding to the point Qj , the map

t 7→
ˆ 1

0

4∑
`=1

ˆ
R
|Jθ` (t, Y )| dY dθ

is continuous, Since the number of tj is finite, the metric will not be affected.
At time t 6= tj , on the other hand, we claim that the generic singularity does not affect the

estimate (3.10), that is, the effect of the generic singularity to the time derivative

d

dt

4∑
`=1

ˆ
R
|Jθ` (t, Y )| dY

is negligible.
We know that

αθ = π, αθY 6= 0 (5.9)

at the singularities. For a fixed time τ , let the point (tε, Yε) be the intersection of Γτ−ε = {(t, Y ); t =
τ − ε} and {(t, Y ); αθ(t, Y ) = π}, and the point (t′ε, Y

′
ε ) be the intersection of Γτ+ε = {(t, Y ); t =

τ + ε} and {(t, Y ); αθ(t, Y ) = π}. Then denote{
Λ+
ε := Γτ+ε ∩ {(t, Y );Y ∈ [Y ′ε , Yε]},

Λ−ε := Γτ−ε ∩ {(t, Y );Y ∈ [Y ′ε , Yε]}.

Thus, we have

lim
ε→0

1

ε

( ˆ
Λ+
ε

−
ˆ

Λ−ε

) 4∑
`=1

|Jθ` (t, Y )| dY = 0,

since each integrand is continuous and |Yε−Y ′ε | = O(ε) because of (5.9). This means that the curve
{(t, Y );αθ(t, Y ) = π} has non-horizontal tangent line at the singularity. This implies that the
estimate (3.10) remains valid in the presence of singular curve where αθ = π. Hence we complete
the proof of Theorem 5.1. �
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Remark 5.1. We want to point out that the assumption that the solution path in Corollary 4.1
is regular, i.e. the solution has only generic singularities, except at finitely many θ values, is very
crucial. Because of this property we show that there are only finitely many points Qj with α = π,
αY = 0. However at time t = tj we cannot treat these Qj’s directly by the method used for t 6= tj
since now |Yε − Y ′ε | = O(1).

5.3. Construction of the geodesic distance. In light of Theorem 1.2, there exists an open

dense set D ⊂
(
C3(R) ∩H1(R) ∩W 1,4(R)

)
, such that, for u0 ∈ D, the solution of (2.1) has only

generic singularities. Now, on D∞ := C∞0 ∩ D, we construct a geodesic distance, defined as the
infimum among the weighted lengths of all piecewise regular paths connecting two given points.

Consider two solutions u, ũ ∈ D∞. Denote their total energies as

E(u) :=

ˆ
R

(u2 + u2
x)(x) dx, E(ũ) :=

ˆ
R

(ũ2 + ũ2
x)(x) dx,

respectively. For E1 > 0 and E2 > 0 denote the set

Σ := {u ∈ H1(R) ∩W 1,4(R); E(u) ≤ E1, ‖ux‖4L4 ≤ E2}.
Definition 5.2. For solutions with initial data in D∞ ∩Σ, we define the geodesic distance d(u, ũ)
as the infimum among the weighted lengths of all piecewise regular paths, which connect u with ũ,
that is, for any time t,

d(u, ũ) := inf
{
‖γt‖ : γt is a piecewise regular path, γt(0) = u, γt(1) = ũ,

E(uθ) ≤ E1, ‖uθx‖4L4 ≤ E2, for all θ ∈ [0, 1]
}
.

Finally we can define the metric for the general weak solutions.

Definition 5.3. Let u0 and ũ0 in H1(R) ∩ W 1,4(R) be two absolute continuous initial data as
required in the existence and uniqueness Theorem 2.1. Denote u and ũ to be the corresponding
global weak solutions, then we define, for any time t,

d(u, ũ) := lim
n→∞

d(un, ũn),

for any two sequences of solutions un and ũn in D∞ ∩ Σ with

‖un − u‖H1∩W 1,4 → 0, and ‖ũn − ũ‖H1∩W 1,4 → 0.

The limit in the definition is independent of the choice of sequences, because the solution flows
are Lipschitz in D∞ ∩Σ. Since the concatenation of two piecewise regular paths is still a piecewise
regular path (after a suitable re-parameterization), it is clear that d(·, ·) is a distance. This way
the metric is well-defined.

Note that when
‖un0 − u0‖H1∩W 1,4 → 0,

it is easy to show that the corresponding solutions satisfy, for any t > 0,

‖un − u‖H1∩W 1,4 → 0

by the semi-linear equations (4.2). So it is clear that the Lipschitz property in Theorem 5.1 can be
extended to the general solutions, and so we conclude to obtain Theorem 1.1.

6. Comparison with other metrics

The purpose of this section is to compare the distance d(·, ·) with other types of metrics.

Proposition 6.1 (Comparison with the Sobolev metric). For any solutions u, ũ ∈ Σ to (2.1), there
exists some constant C depends only on E1 and E2, such that,

d(u, ũ) ≤ C
(
‖u− ũ‖H1 + ‖(u− ũ)e−|x|‖L1 + ‖(ux − ũx)e−|x|‖L1 + ‖ux − ũx‖L4

)
.



LIPSCHITZ METRIC FOR THE NOVIKOV EQUATION 27

Proof. Without loss of generality, we only consider the solutions in D∞ ∩ Σ.
For θ ∈ [0, 1], consider the interpolated data uθ as

uθ = θũ+ (1− θ)u. (6.1)

Then the total energy of uθ satisfiesˆ
R

(
(uθ)2 + (uθx)2

)
(t, x) dx =

ˆ
R

(
[θũ+ (1− θ)u]2 + [θũx + (1− θ)ux]2

)
dx

≤
ˆ
R

(
[θ2 + θ(1− θ)](ũ2 + ũ2

x) + [(1− θ)2 + θ(1− θ)](u2 + u2
x)
)
dx

≤max{E(u), E(ũ)} ≤ E1.

(6.2)

Also, for the L4 norm of uθx, it holds that
ˆ
R

(uθx)4(t, x) dx ≤
ˆ
R

(
θũ4

x + (1− θ)u4
x

)
dx ≤ max

{ˆ
R
u4
x dx,

ˆ
R
ũ4
x dx

}
≤ E2. (6.3)

Now, we will estimate the weighted length of the path γt : θ 7→ uθ in (6.1). The goal is to show
that

‖γt‖ ≤ C
(
‖u− ũ‖H1 + ‖(u− ũ)e−|x|‖L1 + ‖(ux − ũx)e−|x|‖L1 + ‖ux − ũx‖L4

)
for some constant C depends only on E1 and E2. First, from (6.1), we obtain

vθ =
duθ

dθ
= ũ− u, uθx = θũx + (1− θ)ux. (6.4)

To derive an upper bound for the weighted length ‖γt‖, we can choose the shift w = 0 in (3.9).
Indeed, by (6.2)–(6.4) and the definition of the weighted length of the path γt, we have

‖γt‖ =

ˆ 1

0
‖vθ‖uθ dθ

=

ˆ 1

0

ˆ
R

(
|vθ|(1 + (uθx)2)2 + |vθx|(1 + (uθx)2) + 4|

(
uθx + (uθx)3

)
vθx|
)
e−|x| dx dθ

≤‖(ũ− u)e−|x|‖L1 + C‖ũ− u‖L∞
ˆ 1

0
(‖uθx‖2L2 + ‖uθx‖4L4) dθ + ‖(ũx − ux)e−|x|‖L1

+ ‖ũx − ux‖L2

ˆ 1

0
‖uθx‖2L4 dθ + C‖ũx − ux‖L2

ˆ 1

0
‖uθx‖L2 dθ

+ C‖ũx − ux‖L4

ˆ 1

0
‖uθx‖3L4 dθ

≤C
(
‖u− ũ‖H1 + ‖(u− ũ)e−|x|‖L1 + ‖(ux − ũx)e−|x|‖L1 + ‖ux − ũx‖L4

)
.

Here, C denotes a generic positive constant depends only on E1 and E2. This completes the proof
of Proposition 6.1. �

In the following two propositions, we compare the distance with the L1 distance and the Kantorovich-
Rubinstein or Wasserstein distance.

Proposition 6.2 (Comparison with L1 metric). For any solutions u, ũ ∈ H1(R) ∩ W 1,4(R) to
(2.1), there exists some constant C depends only on E1 and E2, such that,

‖(u− ũ)e−|x|‖L1 ≤ C · d(u, ũ). (6.5)
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Proof. Assume that γt : θ 7→ uθ is a regular path connecting u with ũ.
1. Notice that

|v| = |v + uxw − uxw| ≤ |v + uxw|+ |uxw| ≤ |v + uxw|(1 + u2
x)2 + |w|(1 + u2

x)2.

Thus, by the above inequality, the definition 5.2, (3.9) and (6.4), for some constants C3, C4 > 0,
we have

d(u, ũ) ≥ C3 inf
γt

ˆ 1

0

ˆ
R
|vθ|e−|x| dx dθ = C3 inf

γt

ˆ 1

0

ˆ
R
|du

θ

dθ
|e−|x| dx dθ ≥ C4‖(u− ũ)e−|x|‖L1 ,

which implies (6.5). �

Proposition 6.3 (Comparison with the Kantorovich-Rubinstein metric). Consider the same as-
sumptions as in Proposition 6.2, and further assume that u, ũ ∈ L1(R). Then one could drop the

e−|x| term in (3.9) to define a new distance d∗, such that

‖(u− ũ)‖L1 ≤ C · d∗(u, ũ), and (6.6)

sup
‖f‖C1≤1

∣∣∣∣ˆ f dµ−
ˆ
f dµ̃

∣∣∣∣ ≤ d∗(u, ũ), (6.7)

where µ, µ̃ are the measures with densities (1+(ux)2)2 and (1+(ũx)2)2 w.r.t the Lebesgue measure,
respectively.

Proof. First, repeating the same proof as in Proposition 6.2 without the term e−|x|, one can very
easily obtain (6.6).

Then, for any function f , such that ‖f‖C1 ≤ 1, denote µθ to be the measure with density
(1 + (uθx)2)2 w.r.t the Lebesgue measure, then the following holds∣∣∣∣ˆ 1

0

d

dθ

ˆ
f dµθ dθ

∣∣∣∣ ≤ˆ 1

0

ˆ
R
|f ′| · |wθ|(1 + (uθx)2)2 dx dθ

+

ˆ 1

0

ˆ
R
|f | · |4(uθx + (uθx)3)(vθx + uθxxw

θ) + (1 + uθx)2)2wθx| dx dθ,
(6.8)

where the two integrals on the right hand side of (6.8) are exactly I1 and I4 of (3.9). Hence, we
get (6.7) immediately. This completes the proof of Proposition 6.2. �

The metric (6.7) is usually called a Kantorovich-Rubinstein distance, which is equivalent to a
Wasserstein distance by a duality theorem [22].

7. Application to the Camassa-Holm equation

Our method of constructing the geodesic distance can be systematically applied to many other
quasilinear equations. Here we give an example of the Camassa-Holm (CH) equation. The energy
measure associated to the CH equation has density u2

x. Here in the Section we will only outline
the construction of the Finsler norm for the infinitesimal tangent vector for smooth solutions. The
issues on the generic regularity (already given in [20]) and the construction of the geodesic distance
can be treated in a similar way as is done for Novikov equation in this paper.

The CH equation reads ut +

(
u2

2

)
x

+ Px = 0,

u(0, x) = u0(x),

(7.1)

where

P :=
1

2
e−|x| ∗

(
u2 +

u2
x

2

)
.
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Let u(x) be a smooth solution to (7.1) and consider a family of perturbed solutions

uε(x) = u(x) + εv(x) + o(ε).

A direct calculation yields that the first order perturbation v satisfies

vt + uvx + vux +
1

2

(ˆ ∞
x
−
ˆ x

−∞

)
e−|x−y|(2uv + uyvy)(y) dy = 0. (7.2)

vxt + uvxx + uxvx + vuxx − 2uv +
1

2

ˆ
R
e−|x−y|(2uv + uyvy)(y) dy = 0. (7.3)

Similar as before, we introduce a horizontal shift w satisfying

xε = x+ εw + o(ε)

Again the shift component of the tangent vector must propagate along characteristic. Namely

wt + uwx = v + uxw. (7.4)

Now we can define a Finsler norm

‖v‖u = inf
w∈A
‖(w, v̂)‖u, with v̂ = v + uxw,

where

A = {solutions w(t, x) of (7.4) with smooth initial data w0(x)} .

and

‖(w, v̂)‖u =

ˆ
R
{[change in x] + [change in u]}(1 + u2

x) dx

+

ˆ
R

[change in the base measure with density u2
x] dx.

More precisely, we have

‖v‖u = inf
w

ˆ
R
{|w|(1 + u2

x) + |v + uxw|(1 + u2
x) + |2ux(vx + uxxw) + u2

xwx|}e−|x| dx

= inf
w

(I1 + I2 + I3) .
(7.5)

The goal of the forthcoming computations is to validate the estimate

d

dt
‖v(t)‖u(t) ≤ C‖v(t)‖u(t), (7.6)

for some constant C depending only on the total energy. As same as before, in the following
calculation, we drop the e−|x| terms.

1. To estimate the time derivative of I1, by (7.1) and (7.4), we have(
w(1 + u2

x)
)
t
+
(
uw(1 + u2

x)
)
x

= (wt + uwx)(1 + u2
x) + w[(1 + u2

x)t + (u(1 + u2
x))x]

= (v + uxw)(1 + u2
x) + w(ux + 2u2ux − 2uxP ).

This yields the estimate

dI1

dt
=

d

dt

ˆ
R
|w|(1 + u2

x) dx ≤
ˆ
R
|v + uxw|(1 + u2

x) dx+ C

ˆ
R
|w|(1 + u2

x) dx

≤ C(I2 + I1).

(7.7)
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2. To estimate the time derivative of I2, recalling (7.1), (7.2) and (7.4), we obtain(
(v + uxw)(1 + u2

x)
)
t
+
(
u(v + uxw)(1 + u2

x)
)
x

= [vt + uvx + ux(wt + uwx) + w(uxt + uuxx)] (1 + u2
x) + (v + uxw)

[
(1 + u2

x)t + (u(1 + u2
x))x

]
=

[
−vux −

1

2

(ˆ ∞
x
−
ˆ x

−∞

)
e−|x−y|(2uv + uyvy) dy + ux(v + uxw)

+w

(
−u

2
x

2
+ u2 − P

)]
(1 + u2

x) + (v + uxw)(ux + 2u2ux − 2uxP )

=

[
−1

2

(ˆ ∞
x
−
ˆ x

−∞

)
e−|x−y|(2uv + uyvy) dy +

1

2
u2
xw + w(u2 − P )

]
(1 + u2

x)

+ (v + uxw)(ux + 2u2ux − 2uxP ).

Note that

2uv = 2u(v + uyw)− 2uuyw,

and

1

2
u2
xw =− 1

2

(ˆ ∞
x
−
ˆ x

−∞

)(
e−|x−y|

1

2
u2
yw

)
y

dy

=− 1

2

(ˆ ∞
x
−
ˆ x

−∞

)
e−|x−y|(uyuyyw +

1

2
u2
ywy) dy +

1

2

ˆ
R
e−|x−y|

1

2
u2
yw dy.

We thus conclude

dI2

dt
=

d

dt

ˆ
R
|v + uxw|(1 + u2

x) dx

≤ C
(ˆ

R
|2ux(vx + uxxw) + u2

xwx| dx+

ˆ
R
|v + uxw|(1 + u2

x) dx+

ˆ
R
|w|(1 + u2

x) dx

)
≤ C(I3 + I2 + I1).

(7.8)

3. To estimate the time derivative of I3, using (7.1), (7.3) and (7.4) to get(
2ux(vx + uxxw) + u2

xwx
)
t
+
(
u(2ux(vx + uxxw) + u2

xwx)
)
x

= 2(uxt + uuxx)(vx + uxxw) + 2ux [vxt + (uvx)x] + 2uxuxx(wt + uwx)

+ 2uxw [uxxt + (uuxx)x] + 2uxwx(uxt + uuxx) + u2
x [wxt + (uwx)x]

= 2

(
−u

2
x

2
+ u2 − P

)
(vx + uxxw + uxwx)− 2ux

(
vuxx − 2uv +

1

2

ˆ
R
e−|x−y|(2uv + uyvy) dy

)
+ 2uxuxx(v + uxw) + 2uxw(−uxuxx + 2uux − Px) + u2

x(vx + uxwx + uxxw)

= 2(u2 − P )(vx + uxxw + uxwx) + 4uux(v + uxw)− ux
ˆ
R
e−|x−y|(2uv + uyvy) dy − 2uxwPx.

(7.9)

The first term in the last equality can be estimated as

2

ˆ
R

(u2 − P )(vx + uxxw + uxwx) dx

= 2

ˆ
R

(u2 − P )(v + uxw)x dx = −2

ˆ
R

(u2 − P )x(v + uxw) dx

≤ C
ˆ
R
|v + uxw|(1 + u2

x).

(7.10)
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For the third term, observe that

2uv + uyvy = 2u(v + uyw)− 2uuyw +
1

2

[
2uy(vy + uyyw) + u2

ywy
]
− 1

2
(u2
yw)y. (7.11)

We have ∣∣∣∣12
ˆ
R

ˆ
R
e−|x−y|(u2

yw)y dy dx

∣∣∣∣ ≤ C ˆ
R

(ˆ
R
|(e−|x−y|)y| dx

)
|w|u2

y dy

≤ C
ˆ
R
|w|(1 + u2

x) dx.

(7.12)

In light of (7.9)–(7.12), we obtain

dI3

dt
=

d

dt

ˆ
R
|2ux(vx + uxxw) + u2

xwx| dx

≤ C
(ˆ

R
|2ux(vx + uxxw) + u2

xwx| dx+

ˆ
R
|v + uxw|(1 + u2

x) dx+

ˆ
R
|w|(1 + u2

x) dx

)
≤ C(I3 + I2 + I1).

(7.13)

Combining the inequalities (7.7), (7.8) and (7.13) together, we obtain the desired inequality (7.6).

8. Interaction of two peakons.

In this part, we use numeric method to study the interaction of two peakons, in the form of
(1.5), for the Novikov equation. Especially, in this example, we show the energy concentration,
which indicates the failure of W 1,4(R) space in studying the Lipschitz continuous dependence, or
in another word the necessity in using the transport metric.

As an example, we consider the following two-peakon initial data

u(0, x) =

2∑
i=1

pi(0)e|x−qi(0)| (8.1)

where p1 = 1, p2 = −0.5, q1 = −0.5 and q2 = 0.5, as shown in Figure 4.

x
-10 -5 0 5 10

u
(0

,x
)

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4. Two peakons: Initial data.
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By studying the dynamical system (1.6) of pi and qi in a numeric way, we can clearly see, from
Figure 5, that two peakons will interact. Similar simulation can be found in [19].

In order to know whether there is any energy concentration when two peakons interact, one
needs to study the energies E and F in the interval [q1(t), q2(t)] near and at the time when two
peakons collide. Here x = q1(t) and x = q2(t) are two characteristics starting from the tips of two
initial peakons, respectively. However, the analysis becomes very hard at the collision if one only
uses the system (1.6), because of the blowup of pi.

Instead, in this paper, we use the semi-linear system established in [9], which dilates the inter-
acting characteristics in the new (t, Y )-coordinates. In fact, integrating (4.2), one has

u(t, Y ) = u(0, Y )−
´ t

0 ∂xP1 + P2 dt,

α(t, Y ) = α(0, Y ) +
´ t

0 2u3 cos2 α
2 − u sin2 α

2 − 2 cos2 α
2 (P1 + ∂xP2) dt,

ξ(t, Y ) = ξ(o, Y ) +
´ t

0 ξ[(2u
3 + u)− 2(P1 + ∂xP2)] sinα dt.

(8.2)

We use an iteration:
un+1(t, Y ) = u(0, Y )−

´ t
0 ∂xP1(un, αn, ξn) + P2(un, αn, ξn) dt,

αn+1(t, Y ) = α(0, Y ) +
´ t

0 2u3
n cos2 αn

2 − un sin2 αn
2 − 2 cos2 αn

2 (P1 + ∂xP2)(un, αn, ξn) dt,

ξn+1(t, Y ) = ξ(0, Y ) +
´ t

0 ξ[(2u
3
n + un)− 2(P1 + ∂xP2)(un, αn, ξn)] sinαn dt.

(8.3)
with initial data

u(0, Y ), α(0, Y ) and ξ(0, Y )

calculated by (8.1) and (4.1). Here n is the iteration index. The graphs of u and α are given in
Figures 6 and 7, respectively.

The convergence of this algorithm can be proved by a similar method as the one used in [9].
This is one of the greatest advantages of our algorithm.

Then we study the energies E and F , defined in (2.6)–(2.7), between two characteristics x = q1(t)
and x = q2(t) starting from the tips of two initial peakons, respectively.

We introduce several notations: First, we denote

Y1 = Y (0, q1(0)), Y2 = Y (0, q2(0)),

t
0 1 2 3 4 5 6

q
1
, 
q

2

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 5. Interaction of two peakons on (t, x)-plane. The blue line is for the
characteristic q1(t) and the red dash line is for the characteristic q2(t).
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which are constant on two characteristics, respectively. And we denote that t = t∗ is the time when
two peakons first interact and

q∗ := q1(t∗) = q2(t∗).

By (4.1), (2.6) and (2.7), before the interaction of two peakons, we have

F [q1(t), q2(t)] =

ˆ
[q1(t),q2(t)]

(u4 + 2u2u2
x −

1

3
u4
x)(t, x) dx

=

ˆ
[Y1,Y2]

(
u4 cos4 α

2
+ 2u2 cos2 α

2
sin2 v

2
− 1

3
sin4 α

2

)
ξ dY

-5 0 5

Y

0
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t
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0.8

Figure 6. Solution u(t, Y ).
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Figure 7. Function α(t, Y ). When α = (2k+ 1)π, with any integer k, |ux| blowup
(when two peakons collide). In this example, α attains −π.
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and

L[q1(t), q2(t)] :=

ˆ
[p1(t),p2(t)]

u4
x(t, x) dx =

ˆ
[Y1,Y2]

(sin4 α

2
) ξ dY.

From Figure 8, we see that L[q1(t), q2(t)] is always positive. And when t = t∗,

F [{q∗}] = νt∗({q∗}) =

ˆ
[Y1,Y2]

(
u4 cos4 α

2
+ 2u2 cos2 α

2
sin2 v

2
− 1

3
sin4 α

2

)
ξ(t∗, Y ) dY

and

L[{q∗}] =

ˆ
[Y1,Y2]

(sin4 α

2
) ξ (t∗, Y ) dY

are also nonzero. This means that there exists fourth-order-energy concentration at the point q∗
when peakons interact in our example. This exactly shows the failure of natural Sobolev norm from
energy law in studying the stability or Lipschitz continuous dependence of solutions, as shown in
Figure 1.

Here, we note that by studying the solution on the (t, Y )-coordinates, we can avoid the difficulties
caused by the blowup of |ux|. One can clearly see that above integrals in the interval [Y1, Y2] are
ordinary integrals instead of improper ones.

Similarly, before the interaction of two peakons,

E [q1(t), q2(t)] =

ˆ
[q1(t),q2(t)]

(u2 + u2
x)(t, x) dx =

ˆ
[Y1,Y2]

(
u2 cos2 α

2
+ sin2 α

2

)
ξ cos2 α

2
dY.

However, it is clear that when two peakons interact at time t = t∗, cos α2 = 0, hence,

E{q∗} =

ˆ
[Y1,Y2]

(
u2 cos2 α

2
+ sin2 α

2

)
ξ cos2 α

2
(t∗, Y ) dY = 0.

This tells that there exists no second-order-energy (E) concentration for any weak solutions.
One can also find a picture of u(t, x) on the original (t, x)-coordinates in Figure 9.
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