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Variational wave equations

Nonlinear hyperbolic PDEs

are widely used in modeling wave-like motions, such as water waves, gas dynamics,
liquid crystal, traffic flow, etcs. It is well known singularity often happens for
nonlinear models. Most quasilinear models exhibit singularities in two classes:
Shock/discontinuity and Cusp/peakon.
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Figure : Shocks near a supersonic body. Cusp/peakon for water wave.
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Variational wave equations

First order equations with cusps/peakons solutions

Camassa-Holm equation

a completely integrable model describing the motion of shallow water wave.

ut + (u2/2)x + Px = 0, with P = 1
2e
−|x | ∗ (u2 + u2x

2 ).

u(t, x) is fluid velocity. P(t, x) is pressure. (t, x) ∈ (R+,R).

1

Figure : Interaction of two peakons

The equation can be written as mt + umx + 2uxm = 0, m = u − uxx .

1
Figure from http://www.mai.liu.se/ halun/research/shockpeakons/



Variational wave equations

Second order equations/systems with cusps/peakons solutions:

Variational wave equation
utt − c(u) (c(u) ux)x = 0 .

Derived from
δ

δu

∫
R×R+

1

2

{
u2t − c2(u)u2x

}
dxdt = 0 .

Liquid crystal, Elasticity...
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Figure : Gradient blowup

Energy density: 1
2

(
u2t + c2(u)u2x

)
, so we expect H1 ↪→ C

1
2 solution.



Variational wave equations

Wave type models for nematic liquid crystals

n(t, x): A unit vector field describing mean orientation for a nematic liquid
crystal, with (t, x) ∈ R+ × R3.

When inertia effects dominate viscosity, n may be modelled by least action
principal

δ
δn

∫
R3×R+

{
1
2∂tn · ∂tn−W (n,∇n)

}
dx dt = 0, n · n = 1

where W (n,∇n) is Oseen-Franck potential energy density:

W (n,∇n) = 1
2α(∇ · n)2 + 1

2β (n · ∇ × n)2 + 1
2γ |n× (∇× n)|2 + 1

2η
[
tr(∇n)2 − (∇ · n)2

]
.

Plannar deformation n = (cos u(t, x), sin u(t, x), 0) with x ∈ R:

utt − c(u) (c(u) ux)x = 0 , c2 = α sin2 u + β cos2 u .

An asymptotic model (Hunter-Saxton): (ut + uux)x = 1
2u

2
x .



Variational wave equations

Global well-posedness of variational wave equation

Variational wave equation: Cauchy problem

utt − c(u) (c(u) ux)x = 0 ,

u(0, x) = u0(x) ∈ H1, ut(0, x) = u1(x) ∈ L2 .

Derived from
δ

δu

∫
R×R+

1

2

{
u2t − c2(u)u2x

}
dxdt = 0 .

Energy Law is
1
2 ( u2t + c2 u2x )t − ( c2 ut ux )x = 0 .

c : R→ R+ is a smooth, bounded uniformly positive function.



Variational wave equations

Gradient blowup

Denote Riemann variables as {
R = ut + c(u)ux
S = ut − c(u)ux .

They satisfy {
Rt − cRx = c ′

4c (R2 − S2),

St + cSx = c ′

4c (S2 − R2).

Quadratic terms cause gradient blowup. Glassy-Hunter-Zheng, ’95.

Global well-posedness of weak solution

Energy density is 1
2

(
u2t + c2(u)u2x

)
, so we expect H1 ↪→ C

1
2 solution.



Variational wave equations

Balance laws {
(R2)t − (c(u)R2)x = c ′

2c (R2S − RS2)

(S2)t + (c(u) S2)x = − c ′

2c (R2S − RS2)
(1)

R = ut + c(u) ux & S = ut − c(u) ux

Weak solutions
∫∫ [

φt ut −
(
c(u)φ

)
x
c(u) ux

]
dxdt = 0 , φ ∈ C 1

c

Results on conservative solutions

1. Global existence: Bressan-Y.Zheng ’06 (when u0 is absolutely continuous),
Holden-Raynaud ’11 (remove absolute continuity assumption on u0).

2. Uniqueness when (1) is satisfied in weak sense: Bressan-GC-Q.Zhang ’14(b).

3. Solution is piecewise smooth for generic initial data: Bressan-GC ’15(a).

4. Lipschitz continuous dependence on initial data under a Finsler type optimal
transport metric: Bressan-GC ’15(b).

Existence of dissipative solutions when c(·) is monotonic: P.Zhang-Y.Zheng ’03.
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Variational wave equations

Existence

Existence

Step 1: Derive a semi-linear system from smooth solution for variables

p = 1+R2

Xx
, q = 1+S2

−Yx
, A = arctanR , B = arctan S , u

on characteristic coordinates (X ,Y ).

(x,t)t

s

x

x+(s,t,x) (s,t,x)

.

x−

(X,Y)

X

Y

!

0

Figure : X and Y are constant along back/forward characteristics, respectively.

Step 2: Now forget smooth solution!

The semi-linear system exists a global solution, then after an inverse
transformation, one obtains weak solution for variational wave equation.

The transformation is not smooth, so this method can’t give uniqueness.
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Variational wave equations

Uniqueness

Uniqueness

Weak solutions are in general not unique: Conservative or dissipative solutions.
We prove the uniqueness of energy conservative condition.

Step 1: For any solution u, we prove the existence and uniqueness of characteristic under
the help of energy conservation.

dx

dt
= c(u(t, x)) , u is Hölder 1/2 on x .

?

x

t

_
y

?

Step 2: Show all admissible conservative solutions satisfy a semi-linear system.
Because this system has a unique solution, we prove the uniqueness theorem.
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Uniqueness

An easier equation: Camassa-Holm

ut + (u2/2)x + Px = 0 with P =
1

2
e−|x | ∗ (u2 +

u2x
2

).

Theorem ( Bressan, GC, Q.Zhang, DCDS, 2014)

For any initial data u0 ∈ H1(R), the Cauchy problem of C-H has a unique weak energy
conservative solution.

Definition (Energy conservation condition)

A solution u = u(t, x) is conservative if∫ ∞
0

∫ [
u2xϕt + uu2xϕx + 2 (u2 − P) uxϕ

]
dxdt +

∫
u20,x(x)ϕ(0, x) dx = 0

for every test function ϕ ∈ C1c (R2).

The existence of conservative solution: Bressan-Constantin ’07.

Existence and uniqueness of dissipative solution: P.Zhang-Z.Xin ’00, ’02.
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Uniqueness

Step 1: For any conservative solution u(t, x), find a unique characteristic

Define a variable β measuring total energy from −∞ to a characteristic x(t).

x(t, β) +

∫ x(t,β)

−∞
u2x(t, ξ)dξ = β

Lemma

Let u = u(t, x) be a conservative solution of the Camassa-Holm equation. For any ȳ ∈ R,
there exists a unique Lipschitz continuous map t 7→ x(t) satisfying

d
dtx(t) = u(t, x(t)), x(0) = ȳ ,

d
dt

∫ x(t)

−∞ u2x(t, y) dy =
∫ x(t)

−∞ [2u2ux − 2uxP ](t, y) dy ,

u(t, x(t))− u(τ, x(τ )) = −
∫ t

τ Px(s, x(s)) ds 0 ≤ τ ≤ t .
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Uniqueness

Step 2: We prove solutions satisfy a semi-linear system, then prove uniqueness of VW.



d
dtβ(t, β̄) = G (t, β(t, β̄)),

d
dtx(t, β(t, β̄)) = u(t, β(t, β̄)),

d
dtu(t, β(t, β̄)) = − Px(t, β(t, β̄)),

d
dtv(t, β(t, β̄)) =

(
2u2 − 2P + 1

)
cos2 v

2 − 1

where

v =

{
2 arctan(

uβ
xβ

) when 0 < xβ ≤ 1,

π when xβ = 0.

By Lipschitz continuity of the right-hand side, we obtain the uniqueness.
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Uniqueness

Uniqueness for VW: Bressan, GC, Q.Zhang, Arch. Ration. Mech. Anal., 2014.

Difficulty: energy is transferred from forward to backward waves, and vice versa.

?
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t

_
y

? ?

x

t

_
y

?

Figure : Left: Camassa-Holm; Right: Variational wave

Ideas

Use two independent variables α and β for forward and backward waves.

However, equations of α and β do not have Lipschitz right hand side.
The existence is proved by the Schauder’s fixed point theorem.

Uniqueness of α, β: Define a weighted distance by setting

d (t)(α1, α2) =

∫ α2(t)

α1(t)

W (t, α) dα ⇒ d (t)
(
α1, α2

)
≤ eC0t d (0)

(
α1, α2

)
.
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Variational wave equations

Lipschitz continuous dependence under a Finsler transport metric

Lipschitz continuous dependence on initial data

X

t=0

X

t=T

Figure : Profiles of u2x (solid line) and ũ2x (dash line).

Solution is not Lipschitz under H1 metric.

Idea is to use a transportation metric.

Camassa-Holm: Bressan-Fonte ’05, Grunert-Holden-Raynaud ’11,

d(u, v) ≈ inf
ψ

∫ ∣∣u(x)− v(ψ(x))
∣∣ψ′(x)(1 + u2x(x)) dx · · ·

for any given time t.

Variational wave equation: Bressan-GC ’15.
Two directions. Direct transport is not working. Need to study gradient flows.
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Lipschitz continuous dependence under a Finsler transport metric

A Finsler type optimal transport metric

d∗
(

(u(t), ut(t)) , (ũ(t), ũt(t))
)

= inf
γ

∫ 1

0

∥∥∥v θ, r θ, sθ, uθ,Rθ, S θ
∥∥∥(t) dθ

where

(v θ, r θ, sθ) =
d

dθ
(uθ,Rθ, S θ)

and γ = (uθ,Rθ, S θ) connects two solutions u(0) = u and u(1) = ũ .

u(0)

u(t)
u(T)

u(0)
u(t)

u(T)

~
~

~

θ

θ

θ

v(0)

v(t)

v(T)

θ

θ

θ
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Lipschitz continuous dependence under a Finsler transport metric

How to define ‖v , r , s, u,R , S‖ ?

Variation of u, R , S ...

x

r
~

ε
rε

R
ε

R

εx+  w

Figure : [Change in R ]: O(ε) term of Rε(xε)− R(x) ≈ r + wRx

.

Shift components w(t, x), z(t, x): xε = x + εw or xε = x + εz

Figure : A characteristic is shifted to a characteristic. Hence w and z satisfy linear equations.
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Lipschitz continuous dependence under a Finsler transport metric

Transport metric:

‖v , r , s, u,R , S‖ .= inf
w ,z , equations

∥∥v , r , s, u,R , S ,w , z∥∥
where∥∥v , r , s, u,R , S ,w , z∥∥
≈

∫ ∞
−∞

{
[change in x ] + [change in u] + [change in arctanR ]

}
(1 + R2)W−dx

+

∫ ∞
−∞

[change of the base measure with density R2]W− dx

+ forward direction. . .

Here W−(t, x) is a weight (interaction potential).

Figure : Change of base measure: O(ε) term of R2
ε (xε)dxε − R2(x)dx

.
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Lipschitz continuous dependence under a Finsler transport metric

∥∥v , r , s, u,R , S ,w , z∥∥
= κ1

∫ {
|w |
(

1 + R2
)
W− + |z |

(
1 + S2

)
W +

}
dx

+κ2
∫ {
|r̃ |W− + |s̃|W +

}
dx

+κ3
∫ ∣∣∣v + Rw

2c −
Sz
2c

∣∣∣ {(1 + R2)W− + (1 + S2)W +

}
dx

+κ4
∫ {∣∣∣wx + c ′

4c2
(w − z)S

∣∣∣W− +
∣∣∣zx + c ′

4c2
(w − z)R

∣∣∣W +

}
dx

+κ5
∫ {∣∣∣Rwx + c ′

4c2
(w − z)SR

∣∣∣W− +
∣∣∣Szx + c ′

4c2
(w − z)RS

∣∣∣W +

}
dx

+κ6
∫ {∣∣∣2Rr̃ + R2wx + c ′

4c2
R2S(w − z)

∣∣∣W− +
∣∣∣2Ss̃ + S2zx + c ′

4c2
S2R(w − z)

∣∣∣W +

}
dx

with

r̃ = r + wRx −
c ′

8c2
(w − z)S2, s̃ = r + zSx −

c ′

8c2
(w − z)R2.
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Lipschitz continuous dependence under a Finsler transport metric

Two major difficulties comparing to first order equation

First difficulty: energy transfer{
(R2)t − (cR2)x = c ′

2c (R2S − RS2)

(S2)t + (cS2)x = − c ′

2c (R2S − RS2)

Add weights W± to control crossing terms.

Second difficulty: relative shifts

Figure : [Change in R] = r + wRx + c ′

8c2
(w − z)(R2 − S2)
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Lipschitz continuous dependence under a Finsler transport metric

For smooth solutions on t ∈ [0, t∗) with possible blowup at t∗,

d

dt
‖v , r , s, u,R , S‖ ≤ K · ‖v , r , s, u,R , S‖ .

Constant K is independent of t∗.

Extend the metric to weak solution: Thanks to the generic regularity result in
Bressan-GC, Ann. Inst. H. Poincare, 2015.

~

~

u(T)

?

u(T)

u(T)
~

u(0)

u(0)

u(0)

u (0)
θ

(0)v
θ

u(0)~

~

u(t)

v
θ
(t)

u  (t)θ

u(t)

u(T)

Figure : Solutions with generic initial data are piecewise smooth for any time.
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Lipschitz continuous dependence under a Finsler transport metric

Theorem (Bressan-GC ’15(b), submitted)

For any T0 > 0 and E0 > 0, there exists a constant C , such that,

d∗
((

u(t), ut(t)
)
,
(
ũ(t), ũt(t)

))
≤ C · d∗

((
u(0), ut(0)

)
,
(
ũ(0), ũt(0)

))
for any t ∈ [0,T0] and any energy conservative solutions u and ũ with energy less than E0 .

Relation with other metric:

For any time t,

1
M · ‖u − ũ‖L1 ≤ d∗

(
(u, ut), (ũ, ũt)

)
≤ M ·

(
‖u − ũ‖H1 + ‖ut − ũt‖L2 + ‖u − ũ‖W 1.1 + ‖ut − ũt‖L1

)
,

and

(Wasserstein)
1

M
sup
‖f ‖C1≤1

∣∣∣∣ ∫ f dµ−
∫

fd µ̃

∣∣∣∣ ≤ d∗
(

(u, ut), (ũ, ũt)
)
.

Here µ, µ̃ are the measures with densities u21 + c2(u0)u20,x and ũ21 + c2(ũ0)ũ20,x w.r.t. Lebesgue measure.
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Lipschitz continuous dependence under a Finsler transport metric
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Lipschitz continuous dependence under a Finsler transport metric

Applications to other systems

Wave systems modeling liquid crystal

(existence) P.Zhang-Y.Zheng ’12, GC-P.Zhang-Y.Zheng, ’13,

(uniqueness) GC-J. Huang-Q.Zhang, preprint.

An integrable water wave model (Novikov equation)

ut + u2ux + ∂xP1 + P2 = 0, u(0, x) = u0(x),

where
P1 := p ∗ (32uu

2
x + u3), P2 := 1

2p ∗ u
3
x , p = 1

2e
−|x |.

Existence & uniqueness of (Hölder 3/4) solution, GC-R.M.Chen-Y.Liu, submitted.

Key idea is to use both second and fourth order conservation laws to control the
cubic nonlinearity in the non-local term.
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Thank You!


	Existence
	Uniqueness
	Lipschitz continuous dependence under a Finsler transport metric

