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Abstract. In this paper, a system of wave equations modeling nematic liquid crystal is
considered. The solution of this system in general has gradient blowup. The global-in-time
existence of Hölder continuous energy conservative solution for the initial value problem
was proved in [13] by the second author, P. Zhang & Y. Zheng. In this paper, we prove the
uniqueness and generic regularity of energy conservative solution.

1. Introduction

In this paper, we study the uniqueness and generic regularity for energy conservative Hölder
continuous solution to the system of wave equations

(1.1) ∂ttni − ∂x(c2(n1)∂xni) =
(
−|nt|2 + (2c2 − λi)|nx|2

)
ni, i = 1, 2, 3,

on n = (n1, n2, n3) with

(1.2) |n| = 1.

Here, the time t and space variables x belong to R+ and R, respectively. The constants

λ1 = γ > 0 and λ2 = λ3 = α > 0.

The (positive) wave speed c depends on n1 with

(1.3) c2(n1) = α+ (γ − α)n2
1.

The initial data are

(1.4) ni|t=0 = ni0 ∈ H1, (ni)t|t=0 = ni1 ∈ L2, i = 1, 2, 3.

We briefly introduce the origin of system (1.1) from nematic liquid crystal. Liquid crystal is often
viewed as an intermediate state between liquid and solid. It possesses none or partial positional
order but displays an orientational order at the same time. For the nematic phase, the molecules
float around as in a liquid phase, but have the tendency of aligning along a preferred direction
due to their orientation. The mean orientation of the long molecules in a nematic liquid crystal is
described by a director field of unit vectors, n ∈ S2, the unit sphere. Associated with the director
field n, there is the well-known Oseen-Franck potential energy density W given by

(1.5) W (n,∇n) =
1

2
α(∇ · n)2 +

1

2
β (n · ∇ × n)2 +

1

2
γ |n× (∇× n)|2 .

The positive constants α, β, and γ are elastic constants of the liquid crystal, corresponding to splay,
twist, and bend, respectively.

There are many studies on the constrained elliptic system of equations for n derived through
variational principles from the potential (1.5), and on the parabolic flow associated with it, see
[2, 14, 17, 20, 22, 26] and references therein.
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In the regime in which inertia effects dominate viscosity, the propagation of the orientation waves
in the director field may then be modelled by the least action principle ([1, 23])

(1.6)
δ

δn

ˆ
R+

ˆ
R3

{1

2
∂tn · ∂tn−W (n,∇n)

}
dx dt = 0, n · n = 1.

When the space dimension is one (1-d), i.e. x ∈ R, and when α = β, system (1.6) exactly gives
(1.1), on which we focus in this paper. There is a simpler case when n = (cosu(x, t), sinu(x, t), 0)
(planar deformation). In this case, the function u satisfies

(1.7) utt − c(u)(c(u)ux)x = 0,

with c2(u) = γ cos2 u+ α sin2 u. See [13] and [11] for the derivations of (1.1) and (1.7).
Because of the strong nonlinearity, the solution for (1.6) fails to be Lipschitz continuous even

for 1-d solution with C∞ initial data, such as for solutions of (1.1) and (1.7). See [18] for an
example with finite time gradient blowup. More precisely, the 1-d solution in general includes cusp
singularity, which means that solution is only Hölder continuous, due to the energy concentration.
This causes the following major difficulties in studying the existence, uniqueness and Lipschitz
continuous dependence of global weak solution respectively:

• Classical solution in general does not exist. One has to study weak solutions.
• Solution in general is not unique. To select a unique solution, one needs a physical admis-

sible condition, such as the energy conservation used in this paper. However, the energy
conservation laws are only in the weak form.

Another type of solutions are called dissipative solutions. See existence of dissipative
solution for (1.7) with monotonic wave speed c(·) in [9, 27, 28].
• The energy conservative solution fails to be Lipschitz continuous in the natural Sobolev

space from energy law, such as (u, ut) ∈ H1 × L2 for (1.7) and (n,nt) ∈ (H1 × L2)3 for
(1.1). To prove the Lipschitz continuous dependence, one needs to introduce a new metric
measuring the distance of two solutions.

The first difficulty is obvious due to the singularity formation. The second and third difficulties,
for the uniqueness and Lipschitz continuous dependence, can be clearly seen from the characteristic
equations of (1.7) and (1.1) (c is expressed in terms of n1)

d

dt
x(t) = ±c

(
u
(
t, x(t)

))
.

Here u is a Hölder continuous function with exponent 1/2, although c(·) is a smooth function. So
very loosely speaking, the characteristic equation behaves like the ODE

(1.8) x′(t) = λx
1
2 .

When x(0) = 0, the solutions flows of (1.8) are not unique and the nonzero solution flow is not
Lipschitz. For PDEs, this is corresponding to the situation when cusp singularity forms.

Another major difficulty for all well-posedness problems is that energy in one wave direction may
transfer to another wave direction in wave interactions.

The research on global well-posedness of weak solutions for wave equations including cusp singu-
larity was initiated from the variational wave equation (1.7). Currently, the global well-posedness
of conservative solution for (1.7) has been fairly well understood after a sequence of papers: Global
existence [11, 21], Uniqueness [8], Lipschitz continuous dependence under Finsler type transport
metric [6], and generic regularity [5]. Here the generic regularity result, besides its own interest,
serves as a key part in the Lipschitz continuous dependence result, because it shows that the regular
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enough transport plane exists. Ideas used in these works will be introduced in Subsection 2.1. We
also refer the reader to a survey paper [4].

Now, one major open problem is how to study system of wave equations whose solutions include
cusp singularities. In this paper, we will address this open problem by starting from the wave
system (1.1). In [13], the global existence for Hölder continuous conservative solution for system
(1.1), was established by the second author, Zhang and Zheng. In the current paper, we prove the
following main results

• The uniqueness of conservation solution in Theorem 2.2.
• A generic regularity result in Theorem 2.3, which very roughly speaking tells that most of

weak solutions (or generic solutions) are piecewise smooth for a.e. t.

The second result itself gives concrete generic structure of weak solutions, and will also serve as a
key part in the future study on the Lipschitz continuous dependence of weak solution under some
transport metric.

It is worth mentioning one key difficulty when extending the well-posedness theory from a scalar
wave equation to a system of wave equations. In fact, for systems, one also needs to consider
the possible transfer of energy between different components in the same wave direction. More
precisely, the Riemann variables change from scalar functions R,S to vector valued functions R,S,
so one needs to control both the exchange of energies between waves in two directions such as
between R and S, and between two components in the same direction, such as between R1 and R2.
This issue will be treated in the proofs of Theorems 2.2 and 2.3.

The analysis of system (1.1) is also much more complex than the scalar wave equation (1.7). We
consider this paper as a trumpet in studying the wave model of liquid crystal with more genuine
liquid crystal structure, comparing to (1.7). In fact, equation (1.7), which can be derived from the
least action principle:

δ

δu

ˆ
R+

ˆ
R

1

2

(
u2
t − c2(u)u2

x

)
dx dt = 0,

is a natural model from elasticity.
For 1-d solution of (1.6) with α 6= β, there is currently no existence result. In [30], Zhang and

Zheng proved a global existence result for a system, which can apply to the 1-d energy conservative
weak solutions of (1.6) when α > β, under an additional global-in-time assumption that |n1| is
uniformly away from 1 for any (t, x) ∈ (R+,R).

This paper is divided into 4 sections. In Section 2, after a survey of the key analytical ideas and
existence result, main results in this paper will be introduced. Section 3 is on the uniqueness of
conservative solution. Section 4 is on the generic regularity of weak solution.

2. Main ideas and results

2.1. Main analytical ideas. For readers’ convenience, we summarize the main ideas used for the
global well-posedness, which include ideas used in this paper toward the uniqueness and generic
regularity for (1.1).
Existence. One first constructs and solves a semi-linear system. Then, after a reverse transfor-
mation, one obtains a solution for the original system. However, this method cannot rule out the
possibility that solution can be constructed in another way. So it cannot give the uniqueness of
original system, neither does the Lipschitz continuous dependence.
Uniqueness. The general idea is to use the energy conservation law in the weak form to first
select a unique characteristic then reconstruct a semi-linear system, which has a unique solution.
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So this is essentially an inverse process of the existence proof. However, the techniques needed are
completely different from the existence proof.

In the first step, to select the unique characteristic, we need to introduce a pair of variables
corresponding to the forward and backward energies, respectively, then some weighted distances,
to control the increase of energy in each direction due to wave interaction. This idea was first
introduced by Bressan-Chen-Zhang in [8] for (1.7). The proof also relies on a modified generalized
characteristic idea originally used by Dafermos for Hunter-Saxton equation in [15] then by Bressan-
Chen-Zhang for Camassa-Holm equation in [7]. In this step, the analysis for (1.1) is analog to [8].

The major difference in this paper comparing to [8] is in the second step: how to prove that
all weak solutions satisfy a semi-linear system. In fact, the Riemann variables change from scalar
functions R,S to vector valued functions R,S. One needs to control both the exchange of energies
between waves in two directions such as between R and S, and between two components in the
same direction, such as between R1 and R2. We choose some dependent variables in (3.23) different
from [8] to track the propagation of each component of R and S. Accordingly, many new estimates
are given in Subsection 3.2 comparing to [8].
Generic regularity and Lipschitz continuous dependence. In [6] and [5], Bressan and the
second author established a Finsler type optimal transport metric and proved the Lipschitz contin-
uous dependence of weak solution under this metric, although the solution flow fails to be Lipschitz
continuous under standard Sobolev metric. To make the new transport metric well defined, or in
another word to prove that regular enough transport path between two solutions exists, a generic
regularity result was established in [5]. This result shows that the generic solutions, very loosely
speaking piecewise smooth solutions, are dense in the space (u, ut) ∈ H1 × L2. We extend the
generic regularity result to (1.1) in Theorem 2.3. The difficulty we meet and overcome in this
project is similar to the uniqueness project.

There are some other generic regularity results, such as [16, 24] for hyperbolic conservation
laws. Our proof is based on the analysis of solutions along characteristics, using the semi-linear
equations, which is quite different from the results in [16, 24]. In the proof, we also use the Thom’s
transversality theorem [3, 5, 19].

This result gives concrete generic structure of weak solutions, i.e. there are only three types of
generic singularities, for generic solutions: Starting and ending point of the singular curve, inner
point on the singular curve and intersection point of singularity curves in two directions. And these
singularities are all transversal.

This result will also serve as a key part in the future study on the Lipschitz continuous dependence
of weak solutions.

2.2. Existence results for (1.1). In this part, we review the global existence result in [13]. We
denote Riemann variables as

(2.1)

 R = (R1, R2, R3)
.
= nt + cnx,

S = (S1, S2, S3)
.
= nt − cnx,

and use the following notations

R2 = R ·R, S2 = S · S.
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Then (1.1) can be reformulated as:

(2.2)



∂tRi − c∂xRi =
1

4c2

{
(c2 − λi)(R2 + S2)− 2(3c2 − λi)R · S

}
n1

+
c′(n1)

2c(n1)
(Ri − Si)R1,

∂tSi + c∂xSi =
1

4c2

{
(c2 − λi)(R2 + S2)− 2(3c2 − λi)R · S

}
n1

− c
′(n1)

2c(n1)
(Ri − Si)S1,

nx =
R− S

2c(n1)
or nt =

R + S

2
,

with
λ1 = γ and λ2 = λ3 = α.

System (2.2) has the following form of energy conservation law:

1

4
∂t
(
R2 + S2

)
− 1

4
∂x
(
c(n1)(R2 − S2)

)
= 0,

and two balance laws for energy densities in two directions, respectively,

(2.3)

 (R2)t − (cR2)x = c′

2c(n1)(R2S1 −R1S
2) ,

(S2)t + (cS2)x = − c′

2c(n1)(R2S1 −R1S
2) .

Note all equations from (2.2) to (2.3) only hold for smooth solutions.
The analysis in [13] shows that the problem (1.1)-(1.2) has a weak solution which conserves the

total energy, where the main existence result can be summarized as follows.

Definition 2.1 (Weak solution [13]). The vector function n(t, x), defined for all (t, x) ∈ R+ × R,
is a weak solution to the Cauchy problem (1.1)–(1.4) if it satisfies

(i) In the t-x plane, the functions (n1, n2, n3) are locally Hölder continuous with exponent 1/2.
This solution t 7→ (n1, n2, n3)(t, ·) is continuously differentiable as a map with values in
Lploc, for all 1 ≤ p < 2. Moreover, it is Lipschitz continuous with respect to (w.r.t.) the L2

distance, i.e. ∥∥ni(t, ·)− ni(s, ·)∥∥L2 ≤ L |t− s|, i = 1, 2, 3,

for all t, s ∈ R+.
(ii) The functions (n1, n2, n3) take on the initial conditions in (1.4) pointwise, while their tem-

poral derivatives hold in Lploc for p ∈ [1, 2) .
(iii) The equations (1.1) hold in distributional sense for test function ϕ ∈ C1

c (R+ × R).

Definition 2.2 (Energy conservation [13]). Under the previous assumptions, a solution n = n(t, x)
can be constructed which is conservative in the following sense.

There exist two families of positive Radon measures on the real line: {µt−} and {µt+}, depending
continuously on t in the weak topology of measures, with the following properties.

(i) At every time t one has

µt−(R) + µt+(R) = E0
.
= 2

ˆ ∞
−∞

[
|n1|2(x) + c2(n10(x))|n0,x(x)|2

]
dx ,

where we denote the initial data

n0 = (n10, n20, n30) = n|t=0, n1 = (n11, n21, n31) = nt|t=0.
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(ii) For each t, the absolutely continuous parts of µt− and µt+ w.r.t. the Lebesgue measure have
densities respectively given by∣∣nt + c(n1)nx

∣∣2 = R2,
∣∣nt − c(n1)nx

∣∣2 = S2.

(iii) For almost every t ∈ R+, the singular parts of µt− and µt+ are concentrated on the set where
c′(n1) = 0.

(iv) The measures µt− and µt+ provide measure-valued solutions respectively to the balance laws

(2.4)

 wt − (cw)x = c′

2c(n1)(R2S1 −R1S
2) ,

zt + (cz)x = − c′

2c(n1)(R2S1 −R1S
2) .

Then, one has the following theorem.

Theorem 2.1 (Existence [13]). The problem (1.1)–(1.4) has a global weak energy conservative
solution defined for all (t, x) ∈ [0,∞)× R.

Remark 2.1. In principle, the equations (2.4) should be written as

(2.5)

 wt − (cw)x = c′

2c(n1)(S1w −R1z) ,

zt + (cz)x = − c′

2c(n1)(S1w −R1z) .

Here w = wa + ws is a measure with an absolutely continuous part and a singular part. Because
of the item (iii) in Definition 2.2, the product c′(n1)ws = 0 for a.e. time t. For this reason, on the
right hand side of (2.5) we can replace w with the measure wa having density R2 w.r.t. Lebesgue
measure. Similarly, we can replace z with the measure za having density S2 w.r.t. Lebesgue measure.

The total energy represented by the sum µ− + µ+ is conserved in time. However, occasionally,
some of this energy is concentrated on a set of measure zero. At the times τ when this happens, µτ
has a non-trivial singular part and

E(τ)
.
=

ˆ ∞
−∞

[
|nt|2(τ, x) + c2(n1(τ, x))|nx|2(τ, x)

]
dx < E0 .

The condition (iii) puts some restrictions on the set of such times τ . In particular, if c′(n1) 6= 0
for all n, then this set has measure zero.

2.3. Main results of this paper. The first main result of our paper is the uniqueness of conser-
vative solution.

Theorem 2.2. For any initial data ni0 ∈ H1(R) , ni1 ∈ L2(R), i = 1, 2, 3, the energy conservative
solution to Cauchy problem (1.1)-(1.4) is unique.

The result for the structure of conservative solutions to (1.1)–(1.4) reads

Theorem 2.3. Assume the generic condition α 6= γ is satisfied. Let T > 0 be given, then there
exists an open dense set

D ⊂
(
C3(R) ∩H1(R)

)
×
(
C2(R) ∩ L2(R)

)
,

such that, for (ni0, ni1) ∈ D, i = 1, 2, 3, the conservative solution n = (n1, n2, n3) of (1.1) is
twice continuously differentiable in the complement of finitely many characteristic curves, within
the domain [0, T ]× R.
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3. Uniqueness of conservative solutions

The uniqueness approach in this paper is in some sense an inverse process of [13]. Given a
conservative solution n = n(t, x), we define a set of independent variables X,Y and dependent
variables n, p, q, ν, η, ξ, ζ, and show that these variables satisfy a semi-linear system of equations.
By proving that this semi-linear system has unique solutions, we eventually obtain the uniqueness
of solutions to the original equation (1.1).

We divide the proof into two major steps. Given an energy conservative solution n(t, x), we

1. Prove the existence and uniqueness of characteristic in each direction. (Subsection 3.1)
2. Reconstruct the semi-linear system, then prove Theorem 2.2. (Subsection 3.2)

3.1. A new coordinate, and the existence and uniqueness of characteristic. This part is
analog to the corresponding part in [8], because the energy laws in (2.3) on R2 and S2 are very
similar to those used in [8], and also in this part we do not have to estimate the propagation of each
component Ri, Si separately. We omit some details, and also leave the proof of a Lemma (Lemma
3.2) in the appendix in order to make the paper self-contained.

Step 1 is crucial because essentially the semilinear system, which will be constructed in Step 2,
describes the evolution of n along characteristic curves, i.e. curves t 7→ x±(t) which satisfy

(3.1) ẋ−(t) = −c(n1(t, x−(t))), ẋ+(t) = c(n1(t, x+(t))),

with initial data

(3.2) x−(0) = ȳ, x+(0) = ȳ.

Note, as explained in the introduction, this system might have multiple solutions, since n1(t, x)
is only Hölder continuous. So we need to find a way to use the energy conservation laws in the
weak form to select a unique characteristic. The first idea is to introduce a pair of energy related
variables.

Let n = n(t, x) be an energy conservative solution of (1.1). In view of (1.2) and (1.3), there are
constants c0 and M , such that

(3.3) 0 < c0 ≤ c(n1) < M, |c′(n1)| =
γ − α
c(n1)

|n1| < M.

For simplicity, we introduce a constant to be used throughout this section.

(3.4) C0
.
= ‖ c

′(n1)

2c(n1)
‖L∞ ≤

M

2c0
.

For any time t and any α, β ∈ R, let us define the points x(t, α) and y(t, β) by

(3.5) x(t, α)
.
= sup

{
x ; x+ µt−

(
(−∞, x]

)
< α

}
,

(3.6) y(t, β)
.
= sup

{
x ; x+ µt+

(
(−∞, x]

)
< β

}
.

Notice that the above holds if and only if, for some θ, θ′ ∈ [0, 1], one has

(3.7) x(t, α) + µt−

((
−∞ , x(t, α)

))
+ θ · µt−

({
x(t, α)

})
= α ,

(3.8) y(t, β) + µt+

((
−∞ , y(t, β)

))
+ θ′ · µt−

({
y(t, β)

})
= β .
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Since the measures µt−, µt+ are both positive and bounded, it is clear that these points are well
defined. Actually for smooth enough solutions

(3.9) x(t, α) +

ˆ x(t,α)

−∞
R2(t, ξ) dξ = α ,

(3.10) y(t, β) +

ˆ y(t,β)

−∞
S2(t, ξ) dξ = β .

Here α denotes an energy related parameter of the backward characteristic, while β the forward
characteristic. Then because of equations

(3.11)
d

dt

ˆ x−(t)

−∞
R2(t, x) dx =

ˆ x−(t)

−∞

c′

2c
(R2S1 −R1S

2) dx ,

(3.12)
d

dt

ˆ x+(t)

−∞
S2(t, x) dx = −

ˆ x+(t)

−∞

c′

2c
(R2S1 −R1S

2) dx ,

it is convenient to work with an adapted set of variables x(t, α), y(t, β), instead of the variables
(t, x).

We can prove the following lemma, using very similar method as in [8]. We omit the proof for
brievity.

Lemma 3.1. For every fixed t, the maps α 7→ x(t, α) and β 7→ y(t, β) are both Lipschitz continuous
with constant 1. Moreover, for fixed α, β, the maps t 7→ x(t, α) and t 7→ y(t, β) are absolutely
continuous, locally Hölder continuous with exponent 1/2, and have locally bounded variation.

Then, we are ready to recover the characteristic from the solution n(t, x). The next lemma,
which plays a crucial role in our analysis, shows that for a conservative solution the characteristic
curves can be uniquely determined. The proof is given in the Appendix. One main spirit in the
proof is to introduce a weighted distance, including some wave interaction potential, in order to
control the possible increase of forward or backward energy.

Lemma 3.2. Let n be an energy conservative solution of (1.1). Then, for any ȳ ∈ R, there exists
unique Lipschitz continuous maps t 7→ x±(t) which satisfy (3.1)-(3.2) together with (3.11)-(3.12).

For future use, we introduce some characteristic coordinates (X,Y ) and discuss their properties.
For any couple (X,Y ) ∈ R2, a unique point (t, x) can be determined as follows. Choose points x̄
and ȳ such that

(3.13) X = x̄+

ˆ x̄

−∞
R2(0, x)dx, Y = ȳ +

ˆ ȳ

−∞
S2(0, x)dx.

In view of Lemma 3.2, there exists a unique backward characteristic t 7→ x−(t, x̄) starting at x̄,
and a unique forward characteristic t 7→ x+(t, ȳ) starting at ȳ. Without loss of generality, we set
x̄ ≥ ȳ, then denote (t(X,Y ), x(X,Y )) be the unique point where these two characteristics cross.
That means

(3.14) x−(t(X,Y ), x̄) = x+(t(X,Y ), ȳ) = x(X,Y ).

Next, we define

(3.15) n(X,Y )
.
= n

(
t(X,Y ), x(X,Y )

)
.

The following lemma implies that the maps t, x,n defined above are Lipschitz continuous w.r.t.X,Y .
The details can be found in [8], we omit it here for brevity.
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Lemma 3.3. The map (X,Y )→ (t, x,n)(X,Y ) is locally Lipschitz continuous.

In addition, one has the following remark.

Remark 3.1. By Rademacher’s theorem and the above results, it is easy to see that the map

Λ : (X,Y ) 7→ (t(X,Y ), x(X,Y ))

is a.e. differentiable. From this, we can set

(3.16) Ω
.
=
{

(X,Y ) ; either DΛ(X,Y ) does not exists, or else detDΛ(X,Y ) = 0
}
,

and
V

.
=
{

Λ(X,Y ) ; (X,Y ) ∈ Ω
}
.

By the area formula [31], the 2-dimensional measure of V is zero. Notice that, the map Λ : R2 7→ R2

is onto but not one-to-one. However, for each (t0, x0) /∈ V , there exist a unique point (X,Y ) such
that Λ(X,Y ) = (t0, x0).

Next, for any function f(t, x), with f ∈ L1(R2), the composition f̃(X,Y ) = f(Λ(X,Y )) is well
defined at a.e. point (X,Y ) ∈ R2 \ Ω. One thus has

(3.17)

ˆ
R2
f(t, x) dxdt =

ˆ
R2\Ω

f̃(X,Y ) · | detDΛ(X,Y )| dXdY,

where the determinant of the Jacobian matrix DΛ can be computed as

xX = c(n1) tX , xY = −c(n1) tY ,

DΛ =

 tX tY

xX xY

 =

 xX
c(n1) − xY

c(n1)

xX xY

 .

Hence ∣∣detDΛ
∣∣ =

2

c(n1)
xXxY .

Finally, in the X-Y plane we denote a set

(3.18) G .
= R2 \ Ω .

3.2. An equivalent semi-linear system. In this subsection, we first introduce some variables
in the X-Y plane, then we are devoted to showing that these variables satisfy a semi-linear system
with smooth coefficients. Moreover, their values are uniquely determined by the initial data. At
last, by showing that the map (X,Y ) 7→ (t, x,n)(X,Y ) is uniquely determined, we can prove the
uniqueness of conservative solutions n(t, x) of the Cauchy problem (1.1)-(1.4).

Let the initial values ᾱ, β̄ be given, a careful look at the proof of Lemma 3.2 (in the Appendix)
shows that we can denote t 7→ α(t, ᾱ) and t 7→ β(t, β̄) be the unique solutions to

α(t) = ᾱ+

ˆ t

0

(
−c(0) +

ˆ x(t,α(t))

−∞

c′(S1 −R1 + R2S1 −R1S
2)

2c
dx

)
dt ,

β(t) = β̄ +

ˆ t

0

(
c(0)−

ˆ y(t,β(t))

−∞

c′(S1 −R1 + R2S1 −R1S
2)

2c
dx

)
dt .

(3.19)

Set the new dependent variables p(X,Y ) and q(X,Y ) by

(3.20) p(X,Y ) =
∂

∂ᾱ
α(τ, ᾱ)

∣∣∣∣
ᾱ=X, τ=t(X,Y )

, q(X,Y ) =
∂

∂β̄
β(τ, β̄)

∣∣∣∣
β̄=Y, τ=t(X,Y )

.
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On the other hand, note that t 7→ x−(t) = x(t, α(t)) and t 7→ x+(t) = y(t, β(t)) are the unique
backward and forward characteristics starting from the points x(0, ᾱ) and y(0, β̄), respectively.
Also, recall the definitions of the maps α 7→ x(t, α) and β 7→ y(t, β) in (3.7)-(3.8), we further define
the feature of characteristics by

(3.21) ν(X,Y )
.
=

∂x

∂α
(t(X,Y ), α(t, x(X,Y ))), η(X,Y )

.
=

∂x

∂β
(t(X,Y ), β(t, x(X,Y ))) .

Finally, we define some variables to track the propagation of Ri and Si, instead of R and S, in
order to get a system with unique solution. We define ξ = (ξ1, ξ2, ξ3), ζ = (ζ1, ζ2, ζ3) by setting

(3.22) ξi(X,Y )
.
=

2c(n1(X,Y ))

p(X,Y )
ni,X(X,Y ) , ζi(X,Y )

.
=

2c(n1(X,Y ))

q(X,Y )
ni,Y (X,Y ) ,

for i = 1, 2, 3, where we use the fact that the functions c, p, q are strictly positive. Based on
Rademacher’s theorem and Lemmas 3.1 and 3.3, we see that the above derivatives are a.e. well
defined. Moreover,

p(X,Y ) = q(X,Y ) = 1 if t(X,Y ) = 0.

The main goal of this subsection is to prove that these variables satisfy the following semilinear
system with smooth coefficients
(3.23)

ni,X =
1

2c
ξip, ni,Y =

1

2c
ζiq,

xX =
1

2
νp, xY = −1

2
ηq,

tX =
1

2c
νp, tY =

1

2c
ηq,

pY =
c′

4c2
(ζ1 − ξ1)pq,

qX =
c′

4c2
(ξ1 − ζ1)pq,

νY =
c′

4c2
(ν − η)ξ1q,

ηX = − c′

4c2
(ν − η)ζ1p,

ξi,Y =
ni
8c3

[
(c2 − λi)(η + ν − 2ην)− 2(3c2 − λi)ξ · ζ

]
q − c′

2c
(ζ1 − ζi)ξiq −

c′

4c2
(ζi − ξi)ξ1q,

ζi,X =
ni
8c3

[
(c2 − λi)(η + ν − 2ην)− 2(3c2 − λi)ξ · ζ

]
p+

c′

2c
(ξi − ξ1)ζip+

c′

4c2
(ζi − ξi)ζ1p,

with i = 1, 2, 3, λ1 = γ and λ2 = λ3 = α. Below, we state the main theorem of this subsection.

Theorem 3.1. By possibly changing the functions p, q, ν, η, ξ, ζ on a set of measure zero in the
X-Y plane, the following holds.

(i) For a.e. X0 ∈ R, the functions t, x,n, p, ν, ξ are absolutely continuous on every vertical
segment of the form S0

.
= {(X0, Y ) ; a < Y < b}. Their partial derivatives w.r.t. Y satisfy

a.e. the corresponding equations in (3.23).
(ii) For a.e. Y0 ∈ R, the functions t, x,n, q, η, ζ are absolutely continuous on every horizontal

segment of the form S0
.
= {(X,Y0) ; a < X < b}. Their partial derivatives w.r.t. X satisfy

a.e. the corresponding equations in (3.23).

For this purpose, we recall a technical result in [8].
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Lemma 3.4 ([8]). Let Γ = (a, b) × (c, d) be a rectangle in the X-Y plane. Assume that u ∈ L∞(Γ)
and f ∈ L1(Γ). Moreover assume that there exists null sets NX ⊂ (a, b) and NY ⊂ (c, d) such
that the following holds.

For every X1, X2 /∈ NX and Y 1, Y 2 /∈ NY with X1 < X2 and Y 1 < Y 2, one has
ˆ Y 2

Y 1

[
u(X2, Y )− u(X1, Y )

]
dY =

ˆ Y 2

Y 1

ˆ X2

X1

f(X,Y ) dXdY .

Then, by possibly modifying u on a set of measure zero, the following holds. For a.e. Y0 ∈ ]c, d[ ,
the map X 7→ u(X,Y0) is absolutely continuous and

∂

∂X
u(X,Y0) = f(X,Y0) for a.e. X ∈ (a, b) .

Based on above results and definitions, we begin to study the representation for the variables
ν, η, ξ, ζ in terms of R and S. Then, we have the following results, which can be proved in a similar
procedure as [8]. We omit the proof here for simplicity.

Lemma 3.5. (i) If (X,Y ) ∈ G then

p(X,Y )

xX(X,Y )
= 2(1 + R2) ,

q(X,Y )

xY (X,Y )
= 2(1 + S2) ,

ν(X,Y ) = 1
1+R2 ,

η(X,Y ) = 1
1+S2 ,


ξ(X,Y ) = R

1+R2 ,

ζ(X,Y ) = S
1+S2 ,

where the right hand sides are evaluated at the point (t(X,Y ), x(X,Y )).
(ii) For a.e. (X,Y ) ∈ Ω, one has

ν(X,Y ) = η(X,Y ) = 0

and

ξ(X,Y ) = ζ(X,Y ) = 0.

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. In what follows, we will show the variables t, x,n, p, q, η, ν, ξ, ζ in (3.23)
indeed satisfy the assumptions of Lemma 3.4. Hence, consider any rectangle

Q .
= [X1, X2]× [Y1, Y2]

in the X-Y plane.
1 - Equations for n. In view of Lemma 3.3, we see that the function n is Lipschitz continuous

w.r.t. X,Y . Thus, by the definitions (3.22), it is straightforward to verify that

nX =
1

2c
ξp , nY =

1

2c
ζq.

2 - Equations for x and t. From Lemma 3.3 and the definitions (3.21)-(3.22), we have

∂

∂X
x(X,Y ) =

1

2

∂

∂ᾱ
x(t(X,Y ), α(t(X,Y ), ᾱ))

=
1

2

∂x

∂α
(t(X,Y ), α(t(X,Y ), x(X,Y )))

∂α

∂ᾱ
(t(X,Y ), ᾱ)

∣∣∣∣
ᾱ=X

=
1

2
νp.
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Similarly, we can obtain the equation for xY . To that end, it follows from the equations for x that

tX =
xX
c(n1)

=
1

2c
νp, tY = − xY

c(n1)
=

1

2c
ηq.

3 - Equations for p and q. Consider the domain

D .
=
{

(X,Y ) ; X ∈ [X1, X2], Y ∈ [Y1, Y2], det DΛ(X,Y ) > 0
}
.

By (3.17) and (3.19), it holds thatˆ X2

X1

p(X,Y2)− p(X,Y1) dX

=

ˆ X2

X1

[
∂α(τ,X)

∂X

∣∣∣∣
τ=τ(X,Y2)

− ∂α(τ,X)

∂X

∣∣∣∣
τ=τ(X,Y1)

]
dX

=

ˆ X2

X1

[
∂

∂X

ˆ x(X,Y2)

x(X,Y1)

ˆ τ(X̃,Y2)

τ(X̃,Y1)

c′

2c
(S1 −R1 + R2S1 − S2R1) dt dx

]
dX̃

=

¨
Λ(D)

c′

2c
(S1 −R1 + R2S1 − S2R1) dx dt

=

¨
D

c′

2c
(S1 −R1 + R2S1 − S2R1) · detDΛ(X,Y ) dX dY

=

¨
D

c′

4c2
(S1 −R1 + R2S1 − S2R1)

1

1 + R2

1

1 + S2
pq dX dY

=

¨
Q

c′

4c2
(ζ1 − ξ1)pq dX dY.

The last equality follows from Lemma 3.5, part (i) for the integral over D and part (ii) for the
integral over Q \ D. Thus the above estimate implies

(3.24) pY =
c′

4c2
(ζ1 − ξ1)pq.

In a similar way, we have

qX = − c′

4c2
(ζ1 − ξ1)pq.

4 - Equations for η and ν. From (3.20), (3.21) and Remark 3.1, we obtain
ˆ X2

X1

[
pν(X,Y2)− pν(X,Y1)

]
dX =

ˆ X2

X1

[
∂x(τ,X)

∂X

∣∣∣∣
τ=t(X,Y2)

− ∂x(τ,X)

∂X

∣∣∣∣
τ=t(X,Y1)

]
dX

=

ˆ X2

X1

[
∂

∂X

ˆ x(X,Y2)

x(X,Y1)

ˆ t(X̃,Y2)

t(X̃,Y1)

c′

2c
(S1 −R1) dt dx

]
dX̃ =

¨
Λ(D)

c′

2c
(S1 −R1) dx dt

=

ˆ
D

c′

2c
(S1 −R1) · detDΛ(X,Y ) dX dY

=

ˆ
D

c′

4c2
(S1 −R1)

1

1 + R2

1

1 + S2
pq dX dY

=

ˆ
Q

c′

4c2
(νζ1 − ξ1η)pq dX dY.
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Thus, from Lemma 3.4 one has

(pν)Y =
c′

4c2
(νζ1 − ξ1η)pq,

which from the equation (3.24) for p further implies

νY =
c′

4c2
(ν − η)ξ1q.

Similarly, we have

ηX = − c′

4c2
(ν − η)ζ1p.

5 - Equations for ξ and ζ. Now, it remains to study the equations for ξ and ζ. In fact, we
want to characterize the distributional derivative nXY . More precisely, for any values X1 < X2

and Y1 > Y2, we wish to find a function f ∈ L1
loc(R

2) such that

[ni(X2, Y1)− ni(X1, Y1)]− [ni(X2, Y2)− ni(X1, Y2)] =

ˆ X2

X1

ˆ Y1

Y2

f(X,Y ) dX dY

for i = 1, 2, 3.
However, to obtain this equation, we need more subtle estimate on the weak solutions.

(i). As shown in the Fig. 1, we first denote

P1
.
= (t1, x1) = Λ(X1, Y1), P2

.
= (t2, x2) = Λ(X2, Y1),

P3
.
= (t3, x3) = Λ(X1, Y2), P4

.
= (t4, x4) = Λ(X2, Y2).

Then we denote

• Backward characteristic t 7→ x−1 (t) passing through P1, P3. (Corresponding to X = X1).
• Backward characteristic t 7→ x−2 (t) passing through P2, P4. (Corresponding to X = X2).
• Forward characteristic t 7→ x+

1 (t) passing through P1, P2. (Corresponding to Y = Y1).
• Forward characteristic t 7→ x+

2 (t) passing through P3, P4. (Corresponding to Y = Y2).

-

P

P

P

P

1

2

3

4

Λ(Q)

X

X

X1

2

1

2

-

+

+

X

Γ Γ

Γ Γ

34

13

24

12

ε

ε

ε

ε

x

t

x

t

P

P

4

3

x -ε x -ε

t

t

3 4X X3 4

4

3

34Γ
ε

Figure 1. Left: The support of the test function φε in (3.25). Right: An enlarged picture
of Γε34, which is used in (3.35) where we only do the calculation in the shaded region, becuase
the unshaded region can be omitted as ε→ 0.



14 H. CAI, G. CHEN, AND Y. DU

We now construct a family of test functions φε approaching the characteristic function of the set
Λ(Q), where Q .

= [X1, X2]× [Y1, Y2]. More precisely, set

(3.25) φε(s, y)
.
= min{%ε(s, y), ςε(s, y)},

where

(3.26) %ε(s, y)
.
=


0 if y ≤ x−1 (s)− ε,

1 + ε−1(y − x−1 (s)) if x−1 (s)− ε ≤ y ≤ x−1 (s),
1 if x−1 (s) ≤ y ≤ x−2 (s),

1− ε−1(y − x−2 (s)) if x−2 (s) ≤ y ≤ x−2 (s) + ε,
0 if y ≥ x−2 (s) + ε ,

(3.27) ςε(s, y)
.
=


0 if y ≤ x+

1 (s)− ε,
1 + ε−1(y − x+

1 (s)) if x+
1 (s)− ε ≤ y ≤ x+

1 (s),
1 if x+

1 (s) ≤ y ≤ x+
2 (s),

1− ε−1(y − x+
2 (s)) if x+

2 (s) ≤ y ≤ x+
2 (s) + ε,

0 if y ≥ x+
2 (s) + ε .

For every test function ϕ ∈ C1
c (R2), one has from (2.2)1 that¨

R1

[
ϕt − (cϕ)x

]
dx dt = −

¨
1

4c2

{
(c2 − γ)(|R|2 + |S|2)− 2(3c2 − γ)R · S

}
n1ϕdx dt

−
¨

c′

2c
(R1 − S1)R1ϕdx dt .

Noticing that for i = 1, 2, 3 Ri ∈ L2
loc(R2), c(n1) ∈ H1

loc(R2), 1
c(n1) ∈ H

1
loc(R2), we choose a sequence

of test functions ϕn such that, as n→∞,

ϕn →
φε

c(n1)
in H1(R2).

Taking the limit, we have¨
R1

[(φε
c

)
t
− φεx

]
dx dt = −

¨
1

4c3

{
(c2 − γ)(|R|2 + |S|2)− 2(3c2 − γ)R · S

}
n1φ

ε dx dt

−
¨

c′

2c2
(R1 − S1)R1φ

ε dx dt .

From (2.1), it follows that¨
R1

c
(φεt − cφεx) dx dt = −

¨
1

4c3

{
(c2 − γ)(|R|2 + |S|2)− 2(3c2 − γ)R · S

}
n1φ

ε dx dt

+

¨
c′

c2
R1S1φ

ε dx dt .

(3.28)

(ii). On the other hand, consider the four boundary strips Γε12, Γε13, Γε24 and Γε34 of the support of
φε in Fig. 1. For example, Γε34 is the strip enclosed by x+

2 (t) − ε, x+
2 (t), x−1 (t) − ε and x−2 (t) + ε.

These sets overlap near the points Pi = (ti, xi), i = 1, 2, 3, 4. However, each of these intersections
is contained in a ball of radius O(ε). For example, Γε12 ∩ Γε13 ⊂ B(P1,Kε), for some constant K
and all ε > 0. We first prove some estimates on Γε12 ∩ Γε13, which basically says that these regions
can be omitted.
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In this way, we have∣∣∣∣∣
¨

Γε12∩Γε13

R1

c(n1)
(φεt − cφεx) dx dt

∣∣∣∣∣ ≤ C0

ε

¨
B(P1,Kε)

|R1| dx dt

≤ C0

ε

ˆ t1+Kε

t1−Kε

(ˆ x1+2Kε

x1−2Kε
R2

1(t, x)dx

)1/2

(2Kε)1/2 dt ≤ C0

ε
E

1/2
0 (2Kε)3/2,

for suitable constants C0,K, and all ε > 0. The same arguments used for the other three intersec-
tions yield

lim
ε→0

¨
R1

c(n1)
(φεt − cφεx) dx dt = lim

ε→0

¨
Γε12∪Γε13∪Γε24∪Γε34

R1

c(n1)
(φεt − cφεx) dx dt

= lim
ε→0

(¨
Γε12

+

¨
Γε13

+

¨
Γε24

+

¨
Γε34

)
R1

c(n1)
(φεt − cφεx) dx dt .

(3.29)

(iii). For the integral over Γε13, assume t1, t2, t3, t4 ∈ [0, T ], by the Cauchy’s inequality and (3.27),
we obtain

lim
ε→0

¨
Γε13

R1(t, x)

c(n1(t, x))
· c(n1(t, x−1 (t)))− c(n1(t, x))

ε
dx dt

≤ O(1) · lim
ε→0

¨
Γε34

|c(n1(t, x−1 (t)))− c(n1(t, x))|
ε

|R1(t, x)|dx dt

=
O(1)

ε
· lim
ε→0

ˆ T

0

ˆ
0≤x−1 (t)−x≤ε

|x−1 (t)− x|1/2 |R1(t, x)| dx dt

= O(1) · lim
ε→0

ˆ T

0

(ˆ
0≤x−1 (t)−x≤ε

|R1(t, x)|2 dx

)1/2

dt = 0 .

(3.30)

In a same way as (3.30), it suffices to estimate the integral over Γε24 by

(3.31) lim
ε→0

¨
Γε24

R1

c(n1)
(φεt − cφεx) dx dt = 0 .

As for the integral over Γε34, it holds that

lim
ε→0

¨
Γε34

R1(t, x)

c(n1(t, x))
· c(n1(t, x+

2 (t))) + c(n1(t, x))

ε
dx dt

= lim
ε→0

¨
Γε34

R1(t, x)

c(n1(t, x))

2c(n1(t, x))

ε
dx dt

+ lim
ε→0

¨
Γε34

R1(t, x)

c(n1(t, x))

c(n1(t, x+
2 (t)))− c(n1(t, x))

ε
dx dt

= lim
ε→0

2

ε

¨
Γε34

R1(t, x) dx dt .

(3.32)

In a similar fashion, we can obtain the integral over Γε12 as

(3.33) lim
ε→0

¨
Γε12

R1

c(n1)
(φεt − cφεx) dx dt = − lim

ε→0

2

ε

¨
Γε12

R1(t, x) dx dt .
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Since
{

(c2 − γ)(|R|2 + |S|2)− 2(3c2 − γ)R · S
}
n1 ∈ L1

loc(R2) and R1S1 ∈ L1
loc(R2), we derive

lim
ε→0

¨ (
− 1

4c3

{
(c2 − γ)(|R|2 + |S|2)− 2(3c2 − γ)R · S

}
n1 +

c′

c2
R1S1

)
φε dx dt

=

¨
Λ(Q)

(
− 1

4c3

{
(c2 − γ)(|R|2 + |S|2)− 2(3c2 − γ)R · S

}
n1 +

c′

c2
R1S1

)
dx dt .

(3.34)

Thus, it follows from (3.28)–(3.34) that

lim
ε→0

1

ε

¨
Γε34

R1 dx dt− lim
ε→0

1

ε

¨
Γε12

R1 dx dt

=

¨
Λ(Q)

(
− 1

8c3

{
(c2 − γ)(|R|2 + |S|2)− 2(3c2 − γ)R · S

}
n1 +

c′

2c2
R1S1

)
dx dt .

(3.35)

(iv). In addition, using n1 ∈ H1
loc, we further have that (Fig. 1, right)

n1(P4)− n1(P3) = lim
ε→0

1

ε

(ˆ x4

x4−ε
n1(t4, y) dy −

ˆ x3

x3−ε
n1(t3, y) dy

)
= lim

ε→0

1

ε

ˆ ˆ
Γ34

[
n1,t + c(n1(t, x+

2 (t)))n1,x

]
dx dt

= lim
ε→0

1

ε

ˆ ˆ
Γ34

[
n1,t + c(n1(t, x))n1,x

]
dx dt

= lim
ε→0

1

ε

ˆ ˆ
Γ34

R1 dx dt .

This together with a similar estimate for n1(P2)− n1(P1) implies

[n1(P4)− n1(P3)]− [n1(P2)− n1(P1)]

=

¨
Λ(Q)

(
− 1

8c3

{
(c2 − γ)(|R|2 + |S|2)− 2(3c2 − γ)R · S

}
n1 +

c′

2c2
R1S1

)
dx dt .

(3.36)

Here, in view of Remark 3.1, we can write the right hand side of (3.36) as an integral w.r.t. the
variables X,Y

[n1(X2, Y2)− n1(X1, Y2)]− [n1(X2, Y1)− n1(X1, Y1)]

= −
¨
Q∩G

n1

8c3

{
(c2 − γ)(|R|2 + |S|2)− 2(3c2 − γ)R · S

}
· p

(1 + R2)

q

2c(1 + S2)
dXdY

+

¨
Q∩G

c′

2c2
R1S1 ·

p

(1 + R2)

q

2c(1 + S2)
dXdY .

Therefore, it follows from Lemma 3.4 that the weak derivative n1,XY exists and if detDΛ(X,Y ) > 0,
then

n1,XY (X,Y ) =
n1

16c4

{
(c2 − γ)(|R|2 + |S|2)− 2(3c2 − γ)R · S

}
· pq

(1 + R2)(1 + S2)

− c′

4c3
R1S1 ·

pq

(1 + R2)(1 + S2)
,

if detDΛ(X,Y ) = 0, then

n1,XY (X,Y ) = 0.
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Finally, the definition (3.22) shows that

(3.37) n1,XY =
n1

16c4

[
(c2 − γ)(η + ν − 2ην)− 2(3c2 − γ)ξ · ζ

]
pq − c′

4c3
ξ1ζ1pq .

(v). Hence, from Lemma 3.4, we see that, for a.e. X, the map Y 7→ n1,X(X,Y ) = ( 1
2cξ1p)(X,Y )

is absolutely continuous and its derivative is given by (3.37). Recalling the equations for p and n1,
and the fact that p remains uniformly positive on bounded sets, we get

ξ1,Y =
n1

8c3

[
(c2 − γ)(η + ν − 2ην)− 2(3c2 − γ)ξ · ζ

]
q − c′

4c2
(ζ1 − ξ1)ξ1q .

Similarly, we can obtain

ζ1,X =
n1

8c3

[
(c2 − γ)(η + ν − 2ην)− 2(3c2 − γ)ξ · ζ

]
p+

c′

4c2
(ζ1 − ξ1)ζ1p .

Then ξj,Y , ζj,X , j = 2, 3 can be proved in a similar argument. This completes the proof of Theorem
3.1.

3.3. Proof of Theorem 2.2. Now, we are in a position to prove Theorem 2.2 on the uniqueness
of conservative solutions to equation (1.1). Let the initial data ni0 ∈ H1(R), ni1 ∈ L2(R), i = 1, 2, 3
be given. These data uniquely determine a curve γ in the X-Y plane, parameterized by

X(x)
.
= x+

ˆ x

−∞
R2(0, y) dy , Y (x)

.
= x+

ˆ x

−∞
S2(0, y) dy.

Notice that the values of (n, x, t, p, q, ν, η, ξ, ζ) are all determined by the data ni0, ni1 along γ. Thus,
at the point (X(x), Y (x)) ∈ γ, we have t = 0,

x = x ,

 n = ni0(x),

p = q = 1 ,


ν =

1

1 + R2(0, x)
,

η =
1

1 + S2(0, x)
,


ξ =

R(0, x)

1 + R2(0, x)
,

ζ =
S(0, x)

1 + S2(0, x)
,

for i = 1, 2, 3. Also, by the definition (2.1), one has

R(0, x) = n1(x) + c(n10(x)) R0,x , S(0, x) = n1(x)− c(n10(x)) n0,x .

Using an argument analog to the one in [13] for a semi-linear system, we can prove that the
right hand side of (3.23) is Lipschitz. Then by a standard contraction mapping theory, we can
prove that the system (3.23) has a unique solution in the X-Y plane. We refer the reader to [13].
Moreover, the functions (X,Y ) 7→ (x, t,n)(X,Y ) are uniquely determined, up to a set of zero
measure in the X-Y plane. Since the map (x, t) 7→ n(x, t) is continuous, we conclude that n is
uniquely determined, pointwise in the x-t plane. This completes the proof of Theorem 2.2.
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4. Generic regularity of conservative solutions

Because of the large amount of variables used in this paper, it is hard to find a entirely different
set of variables to use in this section. So we note that the symbols in this section have no relation
to those used in section 3, except the solution n(t,x).

From now on, we are devoted to concerning the generic regularity of conservative solutions to
(1.1)–(1.4) of Theorem 2.3. Roughly speaking, we prove that, for generic smooth initial data
(n0,n1), the corresponding solution is piecewise smooth in the t–x plane, with singularities occur-
ring along a finite set of smooth curves. In this section we always assume that

α 6= γ.

Define the forward and backward characteristics as follows{
d
dsx
±(s, t, x) = ±c(n1(s, x±(s, t, x))),

x±|s=t = x.

Then define the coordinate transformation as

X
.
=

ˆ x−(0,t,x)

0
[1 + R2(0, y)] dy, and Y

.
=

ˆ 0

x+(0,t,x)
[1 + S2(0, y)] dy.

This implies
Xt − c(n1)Xx = 0, Yt + c(n1)Yx = 0.

Thus, for any smooth function f , we have

(4.1)

{
ft + c(n1)fx = (Xt + c(n1)Xx)fX = 2c(n1)XxfX ,

ft − c(n1)fx = (Yt − c(n1)Yx)fY = −2c(n1)YxfY .

Now, we introduce

p =
1 + |R|2

Xx
, q =

1 + |S|2

−Yx
,

L = (l1, l2, l3) =
R

1 + |R|2
, m = (m1,m2,m3) =

S

1 + |S|2
,

h1 =
1

1 + |R|2
, h2 =

1

1 + |S|2
.

(4.2)

We have the semi-linear system, c.f. [13]

(4.3)



∂Y li =
q

8c3(n1)
[(c2(n1)− λi)(h1 + h2 − 2h1h2)− 2(3c2(n1)− λi)L ·m]ni

+
c′(n1)

4c2(n1)
l1q(li −mi),

∂Xmi =
p

8c3(n1)
[(c2(n1)− λi)(h1 + h2 − 2h1h2)− 2(3c2(n1)− λi)L ·m]ni

− c′(n1)

4c2(n1)
m1p(li −mi),

∂Y n =
q

2c(n1)
m, (or ∂Xn =

p

2c(n1)
L),

∂Y h1 =
c′(n1)

4c2(n1)
ql1(h1 − h2), ∂Xh2 =

c′(n1)

4c2(n1)
pm1(h2 − h1),

pY = − c′(n1)

4c2(n1)
pq(l1 −m1), qX =

c′(n1)

4c2(n1)
pq(l1 −m1).
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with i = 1, 2, 3, λ1 = γ and λ2 = λ3 = α. Using (4.1), by letting f = t or x, we obtain the equations

(4.4) tX =
ph1

2c(n1)
, tY =

qh2

2c(n1)
, xX =

ph1

2
, xY = −qh2

2
.

Given the initial data (1.4), the corresponding boundary data for (4.3) can be determined as follows.
In the X–Y plane, consider the line

γ0 = {(X,Y ); X + Y = 0} ⊂ R2

parameterized as x 7→ (X̄(x), Ȳ (x))
.
= (x,−x). Along the curve γ0 we assign the boundary data

(n̄, L̄, m̄, h̄1, h̄2, p̄, q̄) as

n̄ = n0(x), L̄ = R(0, x)h̄1, m̄ = S(0, x)h̄2,

h̄1 =
1

1 + |R(0, x)|2
, h̄2 =

1

1 + |S(0, x)|2
,

p̄ = 1 + |R(0, x)|2, q̄ = 1 + |S(0, x)|2,

(4.5)

where

R(0, x) = n1 + c(n10(x))n′0(x), S(0, x) = n1 − c(n10(x))n′0(x).

It suffices to express the solution n(X,Y ) in terms of the original variables (t, x), then according
to the results in [13], we have

Lemma 4.1. Let (n,L,m, h1, h2, p, q, x, t) be a smooth solution to the system (4.3)–(4.4) with
p, q > 0. Then the set of points

(4.6)
{

(t(X,Y ), x(X,Y ),n(X,Y )); (X,Y ) ∈ R2}

is the graph of a conservative solution to (1.1).

4.1. Compatible boundary data. More generally, Instead of (4.5), along a line γ = {(X,Y ); X+
Y = κ}, we can assign the boundary data for (4.3). That is

n(s, κ− s) = n̄(s), L(s, κ− s) = L̄(s), m(s, κ− s) = m̄(s),

h1(s, κ− s) = h̄1(s), h2(s, κ− s) = h̄2(s),

p(s, κ− s) = p̄1(s), q(s, κ− s) = q̄1(s).

(4.7)

If both equations in (4.3)3 hold, then the boundary data should satisfy the compatibility condition

(4.8)
d

ds
n̄(s) =

d

ds
n(s, κ− s) = (∂Xn− ∂Y n)(s, κ− s) =

p̄(s)

2c(n̄1(s))
L̄(s)− q̄(s)

2c(n̄1(s))
m̄(s).

Now, it suffices to see that, if the compatibility condition (4.8) hold, then any smooth solution
satisfying one of the equations in (4.3)3 satisfies the other as well. More specifically, we have

Lemma 4.2. Assume the compatibility condition (4.8) is satisfied. Let (n,L,m, h1, h2, p, q)(X,Y )
be smooth solutions of the system(4.3) with the boundary conditions (4.7) along the line γ =
{(X,Y ); X + Y = κ}. Then, for any (X,Y ) ∈ R2, it holds that

(4.9) ∂Y n =
q

2c(n1)
m

if and only if

(4.10) ∂Xn =
p

2c(n1)
L.
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Proof. Assume that (4.9) holds, namely, ∂Y ni = q
2c(n1)mi, i = 1, 2, 3. To begin with, we define a

smooth function

ϕ(n1) = 2

ˆ n1

0
c(s) ds,

then (4.9) for i = 1 can be expressed as

(4.11) ϕ(n1)Y = 2c(n1)∂Y n1 = qm1.

Integrating (4.11) in Y to obtain

ϕ(n1(X,Y )) = ϕ(n1(X,κ−X)) +

ˆ Y

κ−X
(qm1)(X, y) dy.

Differentiating the above identity w.r.t. X, thus, it follows from (4.3) and (4.8) that

ϕ(n1(X,Y ))X =ϕ′(n1(X,κ−X)) · (∂Xn1 − ∂Y n1)(X,κ−X) + (qm1)(X,κ−X)

+

ˆ Y

κ−X
[qXm1 + q∂Xm1](X, y) dy

=pl1(X,κ−X) +

ˆ Y

κ−X

( pq

8c3(n1)
[(c2(n1)− γ)(h1 + h2 − 2h1h2)

− 2(3c2(n1)− γ)L ·m]n1

)
(X, y) dy

=pl1(X,κ−X) +

ˆ Y

κ−X

∂

∂Y
(pl1)(X, y) dy

=pl1(X,Y ),

which yields

(4.12) ∂Xn1 =
p

2c(n1)
l1.

On the other hand, we directly integrate (4.9) for ni, i = 2, 3 to deduce

ni(X,Y ) = ni(X,κ−X) +

ˆ Y

κ−X

qmi

2c(n1)
(X, y) dy.
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Differentiating it w.r.t. X, and then utilizing the estimates (4.3), (4.8), (4.12) to get

∂Xni(X,Y ) =(∂Xni − ∂Y ni)(X,κ−X) +
qmi

2c(n1)
(X,κ−X)

+

ˆ Y

κ−X
[
∂Xq

2c(n1)
mi +

q∂Xmi

2c(n1)
− qmi

2c2(n1)
c′(n1)∂Xn1](X, y) dy

=
pli

2c(n1)
(X,κ−X)−

ˆ Y

κ−X

c′(n1)pq

8c3(n1)
(l1mi + lim1)(X, y) dy

+

ˆ Y

κ−X

( pq

16c4(n1)
[(c2(n1)− α)(h1 + h2 − 2h1h2)

− 2(3c2(n1)− α)L ·m]ni

)
(X, y) dy

=
pli

2c(n1)
(X,κ−X) +

ˆ Y

κ−X

∂

∂Y
(

pli
2c(n1)

)(X, y) dy

=
pli

2c(n1)
(X,Y ).

This together with (4.12) implies that (4.10) holds. In a same fashion, we can prove the converse
implication. This completes the proof of Lemma 4.2.

Now, we setting the boundary data for t, x along the line γ = {(X,Y ); X + Y = κ} by

(4.13) x(s, κ− s) = x̄(s), t(s, κ− s) = t̄(s).

In accordance with (4.4), we get the compatibility conditions

(4.14)
d

ds
x̄(s) =

p̄(s)h̄1(s) + q̄(s)h̄2(s)

2
,

(4.15)
d

ds
t̄(s) =

p̄(s)h̄1(s)− q̄(s)h̄2(s)

2c(n̄1(s))
.

Then, we have the following results, which can be proved in a similar procedure as [5], we omit it
here for brevity.

Lemma 4.3. Let (n,L,m, h1, h2, p, q)(X,Y ) be smooth solutions of the system(4.3). Then there
exists a solution (t, x)(X,Y ) of (4.4) with the boundary data (4.13) if and only if the compatibility
conditions (4.14)–(4.15) are satisfied.

4.2. Families of perturbed solutions. Given a point (X0, Y0), and consider the line

(4.16) γ = {(X,Y ); X + Y = κ}, κ
.
= X0 + Y0.

Now, for a fixed solution of (4.3), we are going to construct several families of perturbed solutions.

Lemma 4.4. Assume generic condition holds. Let (n,L,m, h1, h2, p, q) be a smooth solution to the
system (4.3) and let a point (X0, Y0) ∈ R2 be given.
(1) If (h1,LX ,LXX)(X0, Y0) = (0,0,0), then there exists a 7-parameter family of smooth solutions
(nθ,Lθ,mθ, hθ1, h

θ
2, p

θ, qθ), depending smoothly on θ ∈ R7, such that the following holds.
(i) When θ = 0 ∈ R7 one recovers the original solution, namely (n0,L0,m0, h0

1, h
0
2, p

0, q0) =
(n,L,m, h1, h2, p, q).

(ii) At a point (X0, Y0), when θ = 0 one has

(4.17) rank Dθ(h1,LX ,LXX) = 7.



22 H. CAI, G. CHEN, AND Y. DU

(2) If (h1, h2,LX)(X0, Y0) = (0, 0,0), then there exists a 5-parameter family of smooth solutions
(nθ,Lθ,mθ, hθ1, h

θ
2, p

θ, qθ), satisfying (i)-(ii) above, with (4.17) replaced by

(4.18) rank Dθ(h1, h2,LX) = 5.

(3) If (h1, (α − γ)(1 − n2
1)n1,LX)(X0, Y0) = (0, 0,0), then there exists a 5-parameter family of

smooth solutions (nθ,Lθ,mθ, hθ1, h
θ
2, p

θ, qθ) satisfying (i)(ii) as above, with (4.17) replaced by

(4.19) rank Dθ(h1, (α− γ)(1− n2)n1,LX) = 5.

Proof. Let (nθ,Lθ,mθ, hθ1, h
θ
2, p

θ, qθ) be a smooth solution of the semilinear system (4.3). Given the
point (X0, Y0), let the line γ and the values (n̄, L̄, m̄, h̄1, h̄2, p̄, q̄) as in (4.16) and (4.7), respectively.
To begin with, we calculate the values of ∂X li and ∂XX li (i = 1, 2, 3) at the point (X0, Y0) for later
use. Indeed, it is easy to see that, at any point (s, κ− s) ∈ γ,

l̄′i(s) = (∂X li − ∂Y li)(s, κ− s), m̄′i(s) = (∂Xmi − ∂Ymi)(s, κ− s), i = 1, 2, 3,

h̄′j(s) = (∂Xhj − ∂Y hj)(s, κ− s), q̄′(s) = (∂Xq − ∂Y q)(s, κ− s), j = 1, 2.

Here and in the sequel, a prime denotes derivative w.r.t. the parameter s along the line γ. Thus,
in view of (4.3), we have

∂X li(X0, Y0) = l̄′i + q̄fi +
c′(n̄1)

4c2(n̄1)
l̄1q̄(l̄i − m̄i),

∂Ymi(X0, Y0) = −m̄′i + p̄fi −
c′(n̄1)

4c2(n̄1)
m̄1p̄(l̄i − m̄i),

∂Xh1(X0, Y0) = h̄′1 +
c′(n̄1)

4c2(n̄1)
l̄1q̄(h̄1 − h̄2),

∂Y h2(X0, Y0) = −h̄′2 +
c′(n̄1)

4c2(n̄1)
m̄1p̄(h̄2 − h̄1),

∂Y q(X0, Y0) = −q̄′ + c′(n̄1)

4c2(n̄1)
p̄q̄(l̄1 − m̄1),

(4.20)

where all terms on the right hand sides are evaluated at s = X0 and we have denoted

fi
.
=

1

8c3(n̄1)
[(c2(n̄1)− λi)(h̄1 + h̄2 − 2h̄1h̄2)− 2(3c2(n̄1)− λi)L̄ · m̄]n̄i,

with i = 1, 2, 3. A further differentiation yields

(4.21)
d2

ds2
l̄i(s) =

d

ds
[∂X li(s, κ− s)− ∂Y li(s, κ− s)] = (∂XX li + ∂Y Y li − 2∂XY li)(s, κ− s),

for i = 1, 2, 3, where, by virtue of (4.3), the relations for ∂Y Y li and ∂XY li can be bounded as

∂Y Y li(X0, Y0) =q̄∂Y fi + fi∂Y q̄ +
( c′(n̄1)

4c2(n̄1)

)′
l̄1q̄(l̄i − m̄i)∂Y n̄1

+
c′(n̄1)

4c2(n̄1)
[(q̄∂Y l̄1 + l̄1∂Y q̄)(l̄i − m̄i) + l̄1q̄(∂Y l̄i − ∂Y m̄i)]

=gi1, for i = 1, 2, 3,

(4.22)
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and

∂XY li(X0, Y0) =q̄∂Xfi + fi∂X q̄ +
( c′(n̄1)

4c2(n̄1)

)′
l̄1q̄(l̄i − m̄i)∂X n̄1

+
c′(n̄1)

4c2(n̄1)
[(q̄∂X l̄1 + l̄1∂X q̄)(l̄i − m̄i) + l̄1q̄(∂X l̄i − ∂Xm̄i)]

=gi2, for i = 1, 2, 3.

(4.23)

Here, for r = X or Y , a straightforward computation gives rise to

∂rfi =
3c′(n̄1)

c(n̄1)
fi∂rn̄1 +

1

8c3(n̄1)

[
2c(n̄1)c′(n̄1)∂rn̄1(h̄1 + h̄2 − 2h̄1h̄2) + (c2(n̄1)− λi)

· (∂rh̄1 + ∂rh̄2 − 2h̄2∂rh̄1 − 2h̄1∂rh̄2)− 12c(n̄1)c′(n̄1)∂rn̄1L̄ · m̄

− 2(3c2(n̄1)− λi)(∂rL̄ · m̄ + L̄ · ∂rm̄)
]
n̄i +

1

8c3(n̄1)
[(c2(n̄1)− λi)

· (h̄1 + h̄2 − 2h̄1h̄2)− 2(3c2(n̄1)− λi)L̄ · m̄]∂rn̄i, for i = 1, 2, 3.

Hence, in light of (4.21)–(4.23), we obtain

(4.24) ∂XX li = l̄′′i − gi1 + 2gi2, for i = 1, 2, 3.

Now, we construct families solution (n̄θ, L̄θ, m̄θ, h̄θ1, h̄
θ
2, p̄

θ, q̄θ) of perturbation of the data (4.7)
along the curve γ, so that the matrices in (4.17)–(4.19) have full rank at the point (X0, Y0). These
perturbations will have the form



l̄θi (s) = l̄i(s) +

N∑
j=1

θjLij(s),

m̄θ
i (s) = m̄i(s) +

N∑
j=1

θjMij(s),

h̄θ1(s) = h̄1(s) +
N∑
j=1

θjH1j(s),



h̄θ2(s) = h̄2(s) +

N∑
j=1

θjH2j(s),

p̄θ(s) = p̄(s) +

N∑
j=1

θjPj(s),

q̄θ(s) = q̄(s) +
N∑
j=1

θjQj(s),

for some suitable functions Lij ,Mij , H1j , H2j , Pj , Qj ∈ C∞0 (R), i = 1, 2, 3, j = 1, · · · , N . Note that
the construction in (1) needs N = 7 and in (2)–(3), we take N = 5. Moreover, at point s = X0, we
set

n̄θi (X0) = n̄i(X0) +

N∑
j=1

θjNij(X0), for i = 1, 2, 3,

which, together with the compatibility condition (4.8) determine the values of n̄θi (s) for all s ∈ R.
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Thus, by choosing suitable perturbations (n̄θ, L̄θ, m̄θ, h̄θ1, h̄
θ
2, p̄

θ, q̄θ), so that at the point s = X0

and θ = 0, the Jacobian matrix of first order derivatives w.r.t. θ is given by

Dθ



n̄1

n̄2

n̄3

l̄1
l̄2
l̄3
m̄1

m̄2

m̄3

l̄′1
l̄′2
l̄′3
h̄1

h̄2

p̄
q̄
l̄′′1
l̄′′2
l̄′′3
h̄′1
h̄′2
m̄′1
m̄′2
m̄′3
q̄′



=



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



.

At the point (X0, Y0), this relation, (4.20) and (4.24) imply that

Dθ



h1

∂X l1
∂X l2
∂X l3
∂XX l1
∂XX l2
∂XX l3


=



1 0 0 0 0 0 0
∗ 1 0 0 0 0 0
∗ 0 1 0 0 0 0
∗ 0 0 1 0 0 0
∗ ∗ ∗ ∗ 1 0 0
∗ ∗ ∗ ∗ 0 1 0
∗ ∗ ∗ ∗ 0 0 1


.

That means (4.17) holds.
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On the other hand, we choose suitable perturbations (n̄θ, L̄θ, m̄θ, h̄θ1, h̄
θ
2, p̄

θ, q̄θ), such that, at the
point s = X0 and θ = 0, we have

Dθ



n̄1

n̄2

n̄3

l̄1
l̄2
l̄3
m̄1

m̄2

m̄3

h̄1

h̄2

p̄
q̄
l̄′1
l̄′2
l̄′3



=



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



.

At the point (X0, Y0), the above construction and (4.20) yields

Dθ


h1

h2

∂X l1
∂X l2
∂X l3

 =


1 0 0 0 0
0 1 0 0 0
∗ ∗ 1 0 0
∗ ∗ 0 1 0
∗ ∗ 0 0 1

 .

This achieves (4.18).
Finally, if at the point (X0, Y0), (h1, (α−γ)(1−n2

1)n1,LX) = (0, 0,0), then the generic condition
α 6= γ implies that

(4.25) n1(X0, Y0) = 0 or ± 1.
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Hence, we choose suitable perturbations (n̄θ, L̄θ, m̄θ, h̄θ1, h̄
θ
2, p̄

θ, q̄θ), such that, at the point s = X0

and θ = 0, we have

Dθ



n̄1

n̄2

n̄3

l̄1
l̄2
l̄3
m̄1

m̄2

m̄3

h̄1

h̄2

p̄
q̄
l̄′1
l̄′2
l̄′3



=



0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



.

At the point (X0, Y0), it follows from (4.20) that

Dθ


h1

(α− γ)(1− n2
1)n1

∂X l1
∂X l2
∂X l3

 =


1 0 0 0 0
0 (α− γ)(1− 3n2

1) 0 0 0
∗ ∗ 1 0 0
∗ ∗ 0 1 0
∗ ∗ 0 0 1

 .

This together with (4.25) implies (4.19). This completes the proof of Lemma 4.4.

4.3. Proof of the main Theorem 2.3. We start with the following lemma, which shows for
almost all of the solutions the level sets {(X,Y ); h1(X,Y ) = 0} and {(X,Y ); h2(X,Y ) = 0}
satisfy a number of generic properties. The proof relies on an application of Thom’s transversality
theorem [3, 5, 19]. The proof is similar to [5], we omit it here for brevity.

Lemma 4.5. Let a compact domain of the form

Ω
.
= {(X,Y ); |X|+ |Y | ≤M},

and define U be the family of all C2 solutions (n,L,m, h1, h2, p, q) to the semilinear system (4.3),
with p, q > 0 for all (X,Y ) ∈ R2. Moreover, define U ′ ⊂ U be the subfamily of all solutions
(n,L,m, h1, h2, p, q), such that for (X,Y ) ∈ Ω, none of the following values is attained:{

(h1,LX ,LXX) = (0,0,0),
(h2,mY ,mY Y ) = (0,0,0),{
(h1, h2,LX) = (0, 0,0),
(h1, h2,mY ) = (0, 0,0),{
(h1, (α− γ)(1− n2

1)n1,LX) = (0, 0,0),
(h2, (α− γ)(1− n2

1)n1,mY ) = (0, 0,0).

(4.26)

Then U ′ is a relatively open and dense subset of U , in the topology induced by C2(Ω).
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Remark 4.1. There are many forward and backward singular curves on which h1 = 0 and h2 = 0,
respectively. The conditions in (4.26) are corresponding to: starting or ending points of the singular
curves; intersection points of two singular curves in different directions; inner points of the singular
curves, respectively.

Moreover, we have that, if the initial (ni0, ni1) ∈ N , the space N is defined in the (4.27), then
the solution remains smooth for all |x| sufficiently large. That is,

Lemma 4.6. Assume (ni0, ni1) ∈ N and let T > 0 be given. Then there exists r > 0 suffi-
ciently large so that the solution n = n(t, x) of (1.1)–(1.4) remains C2 on the domain {(t, x); t ∈
[0, T ], |x| ≥ r}.

Now, we are ready to prove the Theorem 2.3.

Proof of Theorem 2.3. First, we denote

(4.27) N .
=
(
C3(R) ∩H1(R)

)
×
(
C2(R) ∩ L2(R)

)
,

with norm

‖(ni0, ni1)‖N
.
= ‖ni0‖C3 + ‖ni0‖H1 + ‖ni1‖C2 + ‖ni1‖L2 .

Here and in the rest of this manuscript, i = 1, 2, 3. Given initial data (n̂i0, n̂i1) ∈ N and denote
the open ball

Bδ
.
= {(ni0, ni1) ∈ N ; ‖(ni0, ni1)− (n̂i0, n̂i1)‖N < δ}.

1. Let (n̂i0, n̂i1) ∈ N , by the definition of the space N , we have

n̂i0(x)→ 0, ∂xn̂i0(x)→ 0, and n̂i1(x)→ 0, as |x| → ∞.
Thus, the corresponding functions R,S in (2.1) satisfy, as |x| → ∞,

Ri(0, x)→ 0, and Si(0, x)→ 0.

So the functions R̂i, Ŝi are uniformly bounded on a domain of the form {(t, x); t ∈ [0, T ], |x| ≥ ρ},
for ρ > 0 large enough. More specifically, we can choose δ > 0, such that for every initial data
(ni0, ni1) ∈ Bδ, the corresponding solution n(t, x) remains twice continuously differentiable on the
outer domain {(t, x); t ∈ [0, T ], |x| ≥ %} , for some % > 0 sufficiently large. This implies that the
singularities of n(t, x) in the set [0, T ]× R only occur on the compact set M .

= [0, T ]× [−%, %].
Next, for any (ni0, ni1) ∈ Bδ, let Λ be the map of (X,Y ) 7→ Λ(X,Y )

.
= (t(X,Y ), x(X,Y )),

and let Ω be a domain as in Lemma 4.5. Choosing M large enough and by possibly shrinking the
radius δ, we can obtain the inclusion M⊂ Λ(Ω).

Now, the subset D̃ ⊂ Bδ is defined as follows. (ni0, ni1) ∈ D̃ if (ni0, ni1) ∈ Bδ and for the
corresponding solution (n,L,m, h1, h2, p, q) of (4.3) with boundary data (4.5), the values (4.26) are
never attained, for any (X,Y ) such that (t(X,Y ), x(X,Y )) ∈M.

2. At this step, we claim the set D̃ is open, in the topology of C3 × C2. Indeed, consider a se-
quence of initial data (nνi0, n

ν
i1)ν≥1 such that the sequence converges to (ni0, ni1), with (ni0ν , n

ν
i1) /∈

D̃. By the definition of D̃, there exist points (Xν , Y ν) at which the corresponding solutions
(nν ,Lν ,mν , hν1 , h

ν
2 , p

ν , qν) satisfy

(hν1 ,L
ν
X ,L

ν
XX)(Xν , Y ν) = (0,0,0), (tν(Xν , Y ν), xν(Xν , Y ν)) ∈M,

for all ν ≥ 1. Observe that the domain Ω is compact, we can choose a subsequence, denote still by
(Xν , Y ν), such that (Xν , Y ν)→ (X̄, Ȳ ) for some point (X̄, Ȳ ). By continuity,

(h1,LX ,LXX)(T̄ , Ȳ ) = (0,0,0), (t(X̄, Ȳ ), x(X̄, Ȳ )) ∈M,



28 H. CAI, G. CHEN, AND Y. DU

which implies (ni0, ni1) /∈ D̃. Repeating the same procedure on the other cases in (4.26), we can

obtain D̃ is open.
3. Now, we will prove the set D̃ is dense in Bδ. Given (ni0, ni1) ∈ Bδ, by a small perturbation,

we can assume that ni0, ni1 ∈ C∞.
From Lemma 4.5, we can construct a sequence of solutions (nν ,Lν ,mν , hν1 , h

ν
2 , p

ν , qν , xν , tν) of
(4.3), such that, for every ν ≥ 1, (X,Y ) ∈ Ω, the values in (4.26) are never attained, and the
Ck, k ≥ 1 norm satisfies

lim
ν→∞

‖(nνi − ni, lνi − li,mν
i −mi, h

ν
1 − h1, h

ν
2 − h2, p

ν − p, qν − q, xν − x, tν − t)‖Ck(Γ) = 0,

for every bounded set Γ ⊂ R2. Thus, consider the corresponding solution nν(t, x) of (1.1), with
graph {(tν(X,Y ), xν(X,Y ),nν(X,Y ); (X,Y ) ⊂ R2)}. And for t = 0, the corresponding sequence
of initial values satisfies

(4.28) lim
ν→∞

‖nνi0 − ni0‖Ck(I) = 0, lim
ν→∞

‖nνi1 − ni1‖Ck(I) = 0,

for every bounded set I ⊂ R.
Consider a cutoff function ψ(x) ∈ C∞0 , such that

ψ(x) = 1, if |x| ≤ η,
ψ(x) = 0, if |x| ≥ η + 1,

where η � % is large enough. Then for every ν ≥ 1, define the following initial data

ñνi0
.
= ψnνi0 + (1− ψ)ni0, ñνi1

.
= ψnνi1 + (1− ψ)ni1,

which together with (4.28) implies

lim
ν→∞

‖(ñνi0 − ni0, ñνi1 − ni1‖N = 0.

Choosing η > 0 sufficiently large, such that for every (t, x) ∈M,

ñνi (t, x) = nνi (t, x).

While ñνi (t, x) remains C2 on the outer domain {(t, x); t ∈ [0, T ], |x| ≥ %}. Thus, we have proved

for every ν ≥ 1 sufficiently large, (ñνi0, ñ
ν
i1) ∈ D̃, which means that D̃ is dense in Bδ.

4. Finally, we shall show that for every initial data (ni0, ni1) ∈ D̃, the corresponding solution
ni(t, x) of (1.1) is piecewise C2 on the domain [0, T ]×R. Indeed, we know ni(t, x) is C2 on the outer
domain {(t, x); t ∈ [0, T ], |x| ≥ %} by the previous argument. So we need to study the singularity
of solutions on the inner domain M.

Recall from step 1, every point inM is contained in the image of the domain Ω. Thus, for every
point (X0, Y0) ∈ Ω, we have two cases.

Case I. h1(X0, Y0) 6= 0 and h2(X0, Y0) 6= 0. From the coordinate change (4.4), the determinant
of the Jacobian matrix is computed by

det

(
xX xY
tX tY

)
=
pqh1h2

2c
> 0.

From this, we know that the map (X,Y ) 7→ (t, x) is locally invertible in a neighborhood of (X0, Y0).
Therefore, the function ni is C2 in a neighbouhood of (t0(X0, Y0), x(X0, Y0)).

Case II. h1(X0, Y0) = 0. Since h1 = 0 implies L = 0, in this case, we have either LX 6= 0 or
LY 6= 0. Indeed, at the point (X0, Y0), it follows from (4.3) that,

∂Y li(X0, Y0) =
q

8c3(n1)
[(c2(n1)− λi)h2]ni,
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with i = 1, 2, 3. By the definition of D̃, we know the values (h1, h2,LX) = (0, 0,0) and (h1, (α −
γ)(1− n2

1)n1,LX) = (0, 0,0) are never attained in Ω. Thus, we get LX 6= 0 or LY 6= 0.
5. By continuity, there exists η > 0, such that the values in (4.26) are never attained in the open

neighborhood

Ω′
.
= {(X,Y ); |X| < M + η, |Y | < M + η}.

Thanks to the implicit function theorem, we derive that the sets

U l .
= {(X,Y ) ∈ Ω′; L(X,Y ) = 0, h1(X,Y ) = 0},

and

Um .
= {(X,Y ) ∈ Ω′; m(X,Y ) = 0, h2(X,Y ) = 0}

are 1–dimensional embedded manifold of class C2.
Now, we claim that the number of connected components of U l that intersect the compact set

Ω is finite. Assume, by contradiction, that P1, P2, · · · is a sequence of points in U l ∩ Ω belonging
to distinct components. Thus, we can choose a subsequence Pi, such that Pi → P̄ for some
P̄ ∈ U l ∩Ω. By assumption, (LX ,LY )(P̄ ) 6= (0,0). Hence, by the implicit function theorem, there
is a neighborhood Γ of P̄ such that γ := U l ∩Γ is a connected C2 curve. Thus, Pi ∈ γ on all i large
enough, providing a contradiction.

6. To complete the proof, we need to study in more detail the image of the singular set U l and
Um, since the set of points (t, x) where n is singular coincides with the image of the two sets U l,Um
under the C2 map (X,Y ) 7→ Λ(X,Y ) = (t(X,Y ), x(X,Y )).

By the argument in step 5, inside the compact set Ω′, there are only finite many points where
h1 = 0,L = 0, and LX = 0, say Pi = (Xi, Yi), i = 1, · · · ,m, and by (4.26), at a point (X0, Y0) ∈
U l ∩ Um, we have LX 6= 0,LY = 0,mX = 0,mY 6= 0. Thus, the two curves h1 = 0 and h2 = 0
intersect perpendicular. Therefore, there are only finitely many such intersection points inside
Ω, say Q = (t′, Y

′
 ),  = 1, · · · , n. Moreover, the set U l\{P1, · · · , Pm, Q1, · · · , Qn} has finitely

many connected components which intersect Ω. Consider any one of these components. This is a
connected curve, say γj , such that h1 = 0,L = 0 and LX 6= 0 for any (X,Y ) ∈ γj . Thus, this curve
can be expressed in the form

γj = {(X,Y ) : X = φj(Y ), aj < Y < bj},

for a suitable function φj .
At this stage, we claim that the image Λ(γj) is a C2 curve in the t–x plane. Indeed, it suffices to

show that, on the open interval (aj , bj), the differential of the map Y 7→ (t(φj(Y ), Y ), x(φj(Y ), Y ))
does not vanish. This is true, because by (4.4), we have

d

dY
t(φj(Y ), Y )) = tXφ

′
j + tY =

qh2

2c(n1)
> 0,

since h2, c(n1), q > 0. Hence, the singular set Λ(U l) is thus the union of the finitely points
pi = Λ(Pi), i = 1, · · · ,m, q = Λ(Q),  = 1, · · · , n, together with finitely many C2–curve Λ(γj).
Obviously, the same representation is valid for the image Λ(Um). This completes the proof of
Theorem 2.3.

Appendix

In the Appendix, we give the proof of Lemma 3.2. The proof is very similar to the corresponding
one in [8]. We add it here for the readers’ convenience.
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Proof. We claim that there exists a unique function t 7→ α(t) such that

(A.1) x−(t) = x(t, α(t))

satisfies the equations in (3.1)-(3.2) and (3.11). We begin to prove the claim on the interval t ∈ [0, 1],
then iterate the argument by induction. We prove this lemma by several steps.

1. We first derive an equation for α(t). Summing the first equation in (3.1) with (3.11) and
integrating w.r.t. time we obtain

(A.2)

x−(t) + µt−

(]
−∞ , x−(t)

[)
+ θ · µt−

(
{x−(t)}

)

= ȳ +

ˆ ȳ

−∞
R2(0, x) dx+

ˆ t

0

(
−c(n1(s, x−(s))) +

ˆ x−(s)

−∞

c′(R2S1 −R1S
2)

2c
dx

)
ds ,

for some θ ∈ [0, 1]. In view of the definition (2.1), one has

(A.3) c(n1(t, x)) = c(0) +

ˆ x

−∞
c′(n1(t, ξ))n1,x(t, ξ) dξ = c(0) +

ˆ x

−∞

c′(R1 − S1)

2c
dξ .

This together with (A.1)–(A.2) gives an integral equation for α,

(A.4) α(t) = ᾱ+

ˆ t

0

(
−c(0) +

ˆ x(s,α(s))

−∞

c′(S1 −R1 + R2S1 −R1S
2)

2c
dx

)
ds .

Here

(A.5) ᾱ = α(0) = ȳ +

ˆ ȳ

−∞
R2(0, x) dx .

We further observe that the equation (A.4) is in accordance with

(A.6) α̇(t) = G(t, α(t))
.
= −c(0) +

ˆ x(t,α(t))

−∞

c′(S1 −R1 + R2S1 −R1S
2)

2c
dx .

2. Now, we will get the existence of a solution to (A.4). More precisely, define the Picard map
P : C0([0, 1]) 7→ C0([0, 1]) by setting

Pα(t)
.
= ᾱ+

ˆ t

0

[
−c(0) +

ˆ x(s,α(s))

−∞

c′(S1 −R1 + R2S1 −R1S
2)

2c
dx

]
ds .

We can prove P is a continuous transformation of a compact convex set K ⊂ C0([0, 1]) into itself.
Here the set K is a set of Hölder continuous functions, defined by

K .
= {f ∈ C1/2([0, 1]) ; ‖f‖C1/2 ≤ CK , f(0) = ᾱ},

for a suitable constant CK . The detail can be found in [8]. By Schauder’s fixed point theorem, we
conclude that the integral equation (A.4) has at least one solution. Iterating the argument, this
solution can be extended to any time interval t ∈ [0, T ].

3. Using a generalized characteristic idea, in this and the next step we prove that x−(τ)
.
=

x(τ, α(τ)) satisfies the first equation in (3.1) at a.e. time τ . Since c′

2c [R
2S1−R1S

2] ∈ L1([0, T ]×R),
a classical theorem of Lebesgue implies that

lim
r→0+

1

πr2

ˆ ˆ
(τ−t)2+(y−x)2≤r2

c′

2c
[R2S1 −R1S

2](τ, y)dydτ =
c′

2c
[R2S1 −R1S

2](t, x),

for all (t, x) ∈ ]0, T [×R outside a null set N2 whose 2-dimensional measure is zero.
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If one divides by r instead of r2, by Corollary 3.2.3 in [31] there is a set N1 ⊂ N2 whose
1-dimensional Hausdorff measure is zero and such that

lim sup
r→0+

1

r

ˆ ˆ
(τ−t)2+(y−x)2≤r2

c′

2c
[R2S1 −R1S

2](τ, y)dydτ = 0

for every (t, x) 6∈ N1.
Moreover, by the definition of absolutely continuity and the fact that the map α 7→ x(t, α) is

contractive, it is easy to prove the map t 7→ x−(t)
.
= x(t, α(t)) is absolutely continuous. Use [8] as

a reference.
Thanks to the above, there exists a null 1-dimensional set N ⊂ [0, T ] with the properties

(i) For every τ /∈ N and x ∈ R one has (τ, x) /∈ N1 ;
(ii) If τ /∈ N then the map t 7→ ζ(t) in (A.7) is differentiable at t = τ . Moreover, τ is a Lebesgue

point of the derivative ζ ′;
(iii) The functions t 7→ x−(t) and t 7→ α(t) are differentiable at each point τ ∈ [0, T ] \ N .

Moreover, each point τ /∈ N is a Lebesgue point of the derivatives ẋ− and α̇.

Here the function

(A.7) ζ(τ)
.
=

ˆ τ

0

ˆ +∞

−∞

∣∣∣∣ c′2c
(R2S1 −R1S

2)

∣∣∣∣ dx dt
is locally Hölder continuous, nondecreasing, with sub-linear growth [8].

4. Let τ 6∈ N . In this step, we will show that the map t 7→ x−(t)
.
= x(t, α(t)) satisfies the first

equation in (3.1) at time t = τ . Assume, on the contrary, that ẋ−(τ) 6= −c(n1(τ, x−(τ))). Without
loss of generality, let

(A.8) ẋ−(τ) = −c(n1(τ, x−(τ))) + 2ε0

for some ε0 > 0. (The case ε0 < 0 can be handled similarly). To begin with, we choose δ > 0 small
enough so that,

(A.9) X(t)
.
= x−(τ) + (t− τ)[−c(n1(τ, x(τ))) + ε0] < x−(t)

for all t ∈]τ, τ + δ]. Notice that the identity in (1.1) holds in distributional sense for test function
ϕ ∈ C1

c (R+ × R), then it remains valid for any Lipschitz continuous function ϕ with compact
support. Given τ < t < τ + δ, for ε > 0 small we shall construct a Lipschitz approximation ϕε to
the characteristic function of the set

Ω
.
= {(s, y) ; s ∈ [τ, t] , y ∈ [ε−1, X(s)]

}
.

Define the Lipschitz function with compact support

ϕε(s, y)
.
= min{%ε(s, y), χε(s)} .

where

ρε(s, y)
.
=


0 if y ≤ −ε−1,

ε−1(y + ε−1) if − ε−1 ≤ y ≤ ε− ε−1,
1 if ε− ε−1 ≤ y ≤ X(s),

1− ε−1(y −X(s)) if X(s) ≤ y ≤ X(s) + ε,
0 if y ≥ X(s) + ε,
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(A.10) χε(s)
.
=


0 if s ≤ τ − ε,

ε−1(s− τ + ε) if τ − ε ≤ s ≤ τ,
1 if τ ≤ s ≤ t,

1− ε−1(s− t) if t ≤ s < t+ ε,
0 if s ≥ t+ ε.

In light of the first equation in (2.4), we get

(A.11)

ˆ [ˆ
(ϕεt − cϕεx) dµt− +

ˆ
c′

2c
(R2S1 −R1S

2)ϕε dx
]
dt = 0.

Moreover, if t is sufficiently close to τ , then for s ∈ [τ, t] and x close to x−(τ), one has

0 = ϕεt + [−c(n1(τ, x(τ))) + ε0]ϕεx ≤ ϕεt − c(n1(s, x))ϕεx ,

since −c(n1(s, x)) < −c(n1(τ, x(τ))) + ε0 and ϕεx ≤ 0. Since the family of measures µt− depends
continuously on t in the topology of weak convergence, taking the limit of (A.11) as ε → 0, for
τ, t /∈ N we obtain

(A.12) 0 ≥ µτ−

(
(−∞, x−(τ)]

)
− µt−

(
(−∞, X(t)]

)
+

ˆ t

τ

ˆ X(s)

−∞

c′

2c
[R2S1 −R1S

2] dxds.

This implies

µt−

(
(−∞, x−(t)]

)
≥ µt−

(
(−∞, X(t)]

)
≥ µτ−

(
(−∞, x−(τ)]

)
+

ˆ t

τ

ˆ x−(s)

−∞

c′

2c
[R2S1 −R1S

2] dxds+ o1(t− τ).
(A.13)

Here the last term

o1(t− τ)
.
= −

ˆ t

τ

ˆ x−(s)

X(s)

c′

2c
[R2S1 −R1S

2] dyds

satisfies

lim
t→τ

o1(t− τ)

t− τ
= 0

because τ /∈ N . Using (A.13) one obtains

α(t)− α(τ) ≥
[
x−(t) + µt−

(
(−∞, x−(t)[

)]
−
[
x−(τ) + µτ−

(
(−∞, x−(τ)]

)]
≥
[
− c
(
n1(τ, x−(τ))

)
+ 2ε0

]
(t− τ) +

ˆ t

τ

ˆ x−(s)

−∞

c′

2c
[R2S1 −R1S

2] dyds+ o1(t− τ).

(A.14)

Differentiating (A.14) w.r.t. t at t = τ , we obtain

α̇(τ) ≥
[
− c
(
n1(τ, x−(τ))

)
+ 2ε0

]
+

ˆ x−(τ)

−∞

c′

2c
[R2S1 −R1S

2] dyds

in contradiction with (A.6). Therefore, the first equation in (3.1) must hold.
5. Now the main issue is how to prove the uniqueness of solution to (A.5)-(A.6) by controlling

the highest order terms in (4.3). Essentially, the appearance of these terms shows that the forward
or backward energy might increase due to wave interaction. We consider the weight

(A.15) W (t, α)
.
= eκA

+(t,α)
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with

(A.16) A+(t, α)
.
= µt+

(
(−∞, x(t, α)]

)
+ [ζ(T )− ζ(t)].

Here ζ is the function defined at (A.7), while

(A.17) κ
.
=

M

2c2
0

.

We recall that ζ(T ) − ζ(t) provides an upper bound on the energy transferred from backward to
forward moving waves and conversely, during the time interval [t, T ]. In turn, A+(t, α) yields an
upper bound on the total energy of forward moving waves that can cross the backward characteristic
x(·, α) during the time interval [t, T ]. For any α1 < α2 and t ≥ 0, we define a weighted distance by
setting

(A.18) d(t)(α1, α2)
.
=

ˆ α2

α1

W (t, α) dα.

Thanks to the measures c′(n1) ·µt− and c′(n) ·µt+ are absolutely continuous w.r.t. Lebesgue measure
for a.e. time t and the Gronwall’s lemma, we have

(A.19) d(t)
(
α1(t), α2(t)

)
≤ eC0t d(0)

(
α1(0), α2(0)

)
,

with C0
.
= ‖c′/2c‖L∞ . The detail can be found in [8], we omit it here for brevity. Thus, for every

initial value ᾱ, the solution of (A.5)-(A.6) is unique.
6. Finally, the uniqueness result of α proved in step 5 implies the uniqueness of solution to the

first equation in (3.1).
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Poincaré–AN, (2016), http://dx.doi.org/10.1016/j.anihpc.2015.12.004.
[6] A. Bressan and G. Chen, Lipschitz metric for a class of nonlinear wave equations, submitted, arXiv: 1506.06310.
[7] A. Bressan, G. Chen, and Q. Zhang, Uniqueness of conservative solutions to the Camassa-Holm equation via

characteristics, Discr. Cont. Dynam. Syst., 35 (2015), 25–42.
[8] A. Bressan, G. Chen and Q. Zhang Unique conservative solutions to a variational wave equation, Arch. Ration.

Mech. Anal. 217 (3) (2015), 1069-1101.
[9] A. Bressan and T. Huang Representation of dissipative solutions to a nonlinear variational wave equation Comm.

Math. Sci. 14 (2016), 31–53
[10] A. Bressan, T. Huang, and F. Yu, Structurally stable singularities for a nonlinear wave equation. To appear in:

Bull. Inst. Math., Acad. Sinica. Available on arXiv:1503.08807.
[11] A. Bressan and Y. Zheng, Conservative solutions to a nonlinear variational wave equation, Comm. Math. Phys.

266 (2006), 471–497.
[12] G. Chen, & Y. Zheng, Singularity and existence for a wave system of nematic liquid crystals. J. Math. Anal.

Appl. 398 (2013), 170188.



34 H. CAI, G. CHEN, AND Y. DU

[13] G. Chen, P. Zhang & Y. Zheng, Conservation solutions to a system of variational wave equations of nematic
liquid crystals, Communications on Pure and Applied Analysis, 12:3 (2013) 1445-1468.
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