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Abstract. We establish the global existence of solutions to the Cauchy problem for a
system of hyperbolic partial differential equations in one space dimension modeling a type
of nematic liquid crystals that has equal splay and twist coefficients. Our results have no
restrictions on the angles of the director, as we use the director in its natural three-component
form, rather than the two-component form of spherical angles.

1. Introduction

In this paper, we consider the global existence of energy conservative weak solutions to the
following one-dimensional wave system of liquid crystals

(1.1)

 ∂ttn1 − ∂x(c2(n1)∂xn1) =
(
−|nt|2 + (2c2 − γ)|nx|2

)
n1,

∂ttn2 − ∂x(c2(n1)∂xn2) =
(
−|nt|2 + (2c2 − α)|nx|2

)
n2,

∂ttn3 − ∂x(c2(n1)∂xn3) =
(
−|nt|2 + (2c2 − α)|nx|2

)
n3,

together with initial data

(1.2) ni|t=0 = ni0 ∈ H1, (ni)t|t=0 = ni1 ∈ L2, i = 1, 2, 3,

where c depends on n1 with c2(n1) = α+ (γ − α)n2
1, α > 0, γ > 0, and n = (n1, n2, n3) with

(1.3) |n| = 1.

Subscripts t or x represent partial derivatives with respect to t or x, and ∂tt = ∂t∂t.
We firstly mention briefly the origin of this system. The mean orientation of the long

molecules in a nematic liquid crystal is described by a director field of unit vectors, n ∈ S2,
the unit sphere. Associated with the director field n, there is the well-known Oseen-Franck
potential energy density W given by

(1.4) W (n,∇n) =
1

2
α(∇ · n)2 +

1

2
β (n · ∇ × n)2 +

1

2
γ |n× (∇× n)|2 .

The positive constants α, β, and γ are elastic constants of the liquid crystal, corresponding
to splay, twist, and bend, respectively. For the special case α = β = γ, the potential
energy density reduces to W (n,∇n) = 1

2α |∇n|2 , which is the potential energy density used

in harmonic maps into S2. There are many studies on the constrained elliptic system of
equations for n derived through variational principles from the potential (1.4), and on the
parabolic flow associated with it, see [2, 5, 6, 8, 9, 17] and references therein. In the regime
in which inertia effects dominate viscosity, however, the propagation of the orientation waves
in the director field may then be modelled by the least action principle ([10, 1])

(1.5)
δ

δn

∫
R4

{
1

2
∂tn · ∂tn−W (n,∇n)

}
dx dt = 0, n · n = 1.
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In the special case α = β = γ, this variational principle (1.5) yields the equation for harmonic
wave maps from (1+3)-dimensional Minkowski space into S2, see [4, 11, 12] for example. One
may also check [13, 14, 15, 16] for wave maps in dimension (1 + 2). For planar deformations
depending on a single space variable x, i.e, the director field has the special form

n = cosu(x, t)ex + sinu(x, t)ey,

where the dependent variable u ∈ R1 measures the angle of the director field to the x-
direction, and ex and ey are the coordinate vectors in the x and y directions, respectively,
one finds that the variational principle (1.5) yields

(1.6) utt − c1(c1ux)x = 0

with the wave speed c1 given specifically by

(1.7) c2
1(u) = γ cos2 u+ α sin2 u.

If we let n be arbitrary in S2 while maintaining dependence on a single space variable x, i.e.,

(1.8) n = (cosu, sinu cos v, sinu sin v)

where (u, v) are both functions of (x, t), we find that the Lagrangian density of (1.5) is

(1.9)
1

2
∂tn · ∂tn−W (n,∇n) =

1

2

[
u2
t − c2

1(u)u2
x

]
+

1

2
a2(u)

[
v2
t − c2

2(u)v2
x

]
where

(1.10) c2
1(u) = γ cos2 u+ α sin2 u, c2

2(u) = γ cos2 u+ β sin2 u, a2(u) = sin2 u.

The Euler-Lagrange equations are

(1.11)

{
utt − c1(u)(c1(u)ux)x = aa′(v2

t − c2
2v

2
x)− a2c2c

′
2v

2
x,

(a2vt)t − (c2
2a

2vx)x = 0.

See Al̀ı and Hunter [1] for more details on the derivation of the above system.
Under the additional assumption that c′1(u) ≥ 0, Zhang and Zheng established the global

existence of energy dissipative weak solutions to (1.6) in [18, 19]. Without any additional
assumption, Bressan and Zheng established the global existence of energy conservative weak
solutions to (1.6) in [3]. In [20, 21], Zhang and Zheng solved the global existence of energy
conservative solutions to (1.11) under the un-physical assumption that a(u) ≥ amin > 0 (
and c2 < c1 for [21]). The goal of this paper is to get rid of this assumption in [20]. Indeed
(1.5) can be equivalently reformulated as

δ

δn

∫
R2

{
1

2
∂tn · ∂tn−W (n, ∂xn) +

λ

2
(|n|2 − 1)

}
dx dt = 0,

which gives rise to the Euler-Langrage equations

(1.12) ∂ttni + ∂niW (n, ∂xn)− ∂x
[
∂∂xniW (n, ∂xn)

]
= λni, for i = 1, 2, 3.

Using |n| = 1, multiplying (1.12) with ni, and summing them up for i from 1 to 3, we obtain

(1.13) λ =
3∑
i=1

{
−|∂tni|2 + ni∂niW (n, ∂xn)− ni∂x

[
∂∂xniW (n, ∂xn)

]}
.

It is easy to calculate that (1.12) has the following energy conservation law:

(1.14) ∂t
[1
2
|nt|2 +W (n, ∂xn)

]
− ∂x

[ 3∑
i=1

∂tni∂∂xniW (n, ∂xn)
]

= 0.
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On the other hand, we use (1.4) in the one-dimensional case to obtain

(1.15) W (n, ∂xn) =
α

2
(∂xn1)2 +

β

2

[
(∂xn2)2 + (∂xn3)2

]
+

1

2
(γ − β)n2

1|nx|2,

from which and (1.13), we infer

(1.16) λ = −|nt|2 +
(
β + 2(γ − β)n2

1

)
|nx|2 + (β − α)n1∂

2
xn1.

Combining (1.12), (1.15) and (1.16), we have

(1.17) ∂ttn1 − ∂x
[
c2

1(n1)∂xn1

]
=
{
−|nt|2 + (2c2

2 − γ)|nx|2 + 2(α− β)(∂xn1)2
}
n1

with

c2
1(n1)

def
= α+ (γ − α)n2

1 and c2
2(n1) = β + (γ − β)n2

1.

Similarly, we have

∂ttn2 − ∂x
[
c2

2(n1)∂xn2

]
=
{
−|nt|2 + (2c2

2 − β)|nx|2 + (β − α)n1∂xxn1

}
n2,

∂ttn3 − ∂x
[
c2

2(n1)∂xn3

]
=
{
−|nt|2 + (2c2

2 − β)|nx|2 + (β − α)n1∂xxn1

}
n3.

(1.18)

In particular, taking α = β in (1.17) and (1.18) leads to (1.1).
When α = β, the two speeds are equal, so we let

(1.19) c2(n1) = c2
1(n1) = c2

2(n1) = α+ (γ − α)n2
1,

and it follows that
(1.20)

0 < min{α, γ} ≤ c2(n1) ≤ max{α, γ} <∞; max{|c′(n1)|} <∞, for any |n1| ≤ 1.

The energy equation (1.14) becomes

(1.21)
1

2
∂t
[
|nt|2 + c2(n1)|nx|2]− ∂x

[
c2(n1)nt · nx] = 0,

where the energy density W in (1.15) becomes

(1.22) W (n, ∂xn) =
1

2
c2(n1)|∂xn|2.

We consider in this paper the global existence of energy-conservative weak solutions of
(1.1)(1.3) to its initial value problem with data (1.2). Since some smooth initial data for
equation (1.6) is known to form singularity later in time, it is easy to see that the same is
true for system (1.11) and (1.1). Thus we shall give up classical solutions and consider weak
solutions instead.

Definition 1.1 (Weak solution). The vector function n(t, x), defined for all (t, x) ∈ R× R,
is a weak solution to the Cauchy problem (1.1)∼(1.3) if it satisfies

(i): In the t-x plane, the functions (n1, n2, n3) are locally Hölder continuous with expo-
nent 1/2. This solution t 7→ (n1, n2, n3)(t, ·) is continuously differentiable as a map
with values in Lploc, for all 1 ≤ p < 2. Moreover, it is Lipschitz continuous with
respect to (w.r.t.) the L2 distance, i.e.

(1.23)
∥∥ni(t, ·)− ni(s, ·)∥∥L2 ≤ L |t− s|, i = 1 ∼ 3,

for all t, s ∈ R.
(ii): The functions (n1, n2, n3) take on the initial conditions in (1.2) pointwise, while

their temporal derivatives hold in Lploc for p ∈ [1, 2[ .
(iii): The equations (1.1) hold in distributional sense for test functions φ ∈ C1

c (R×R).



4 G. CHEN, P. ZHANG, AND Y. ZHENG

Our conclusions are as follows.

Theorem 1.1 (Existence). The problem (1.1)∼(1.3) has a global weak solution defined for
all (t, x) ∈ [0,∞)× R.

We shall use the method of energy-dependent coordinates, used in papers [3] and related
Camassa-Holm equation, to dilate the singularity in building the solution. Our constructive
procedure yields solutions which depend continuously on the initial data. Moreover, the
“energy”

(1.24) E(t) :=
1

2

∫ [
|nt|2 + c2(n1)|nx|2

]
dx

remains uniformly bounded by its initial level:

(1.25) E0 :=
1

2

∫ [
|n1(x)|2 + c2(n10(x))|(n0(x))x|2

]
dx.

More precisely, we have

Theorem 1.2 (Continuous dependence). A family of weak solutions to the Cauchy problem
(1.1)∼(1.3) can be constructed with the additional properties: For every t ∈ R we have

(1.26) E(t) ≤ E0 .

Moreover, let a sequence of initial conditions satisfy∥∥(ni
k
0)x − (ni0)x

∥∥
L2 → 0,

∥∥nik1 − ni1∥∥L2 → 0 , i = 1 ∼ 3,

and nk0 → n0 uniformly on compact sets, as k → ∞. Then we have the convergence of the
corresponding solutions nk → n, uniformly on bounded subsets of the t-x plane.

It appears in (1.26) that the total energy of our solutions may decrease in time. Yet, we
emphasize that our solutions are conservative, in the following sense.

Theorem 1.3 (Conservation of energy). There exists a continuous family {µt ; t ∈ R} of
positive Radon measures on the real line with the following properties.

(i): At every time t, we have µt(R) = E0.
(ii): For each t, the absolutely continuous part of µt has density 1

2

(
|nt|2 + c2(n1)|nx|2

)
w.r.t. Lebesgue measure.

(iii): For almost every t ∈ R, the singular part of µt is concentrated on the set where
n1 = 0 or ±1, when α 6= γ.

In other words, the total energy represented by the measure µ is conserved in time. Occa-
sionally, some of this energy is concentrated on a set of measure zero. At those times τ when
this happens, µτ has a non-trivial singular part and E(τ) < E0. Condition (iii) places some
restrictions on the set of such times τ .

The paper is organized as follows. In Section 2 we introduce a new set of independent and
dependent variables, and derive some identities valid for smooth solutions. We formulate a
set of equations in the new variables which is equivalent to (1.1). Remarkably, in the new
variables all singularities disappear: Smooth initial data lead to globally smooth solutions.
In Section 3, we prove the existence of the solutions in the energy coordinates. In Sections
4∼7, we present proofs to Theorems 1.1∼1.3.



ENERGY CONSERVATIVE SOLUTIONS TO LIQUID CRYSTALS 5

2. New formulation in energy-dependent coordinates

2.1. Energy-dependent coordinates. We denote

(2.1) ~R = (R1, R2, R3)
def
= nt + c(n1)nx, ~S = (S1, S2, S3)

def
= nt − c(n1)nx.

Then (1.1) can be reformulated as:

(2.2)



∂tR1 − c(n1)∂xR1 = 1
4c2(n1)

{
(c2(n1)− γ)(|~R|2 + |~S|2)− 2(3c2(n1)− γ)~R · ~S

}
n1

+ c′(n1)
2c(n1)(R1 − S1)R1,

∂tS1 + c(n1)∂xS1 = 1
4c2(n1)

{
(c2(n1)− γ)(|~R|2 + |~S|2)− 2(3c2(n1)− γ)~R · ~S

}
n1

− c′(n1)
2c(n1)(R1 − S1)S1,

∂tR2 − c(n1)∂xR2 = 1
4c2(n1)

{
(c2(n1)− α)(|~R|2 + |~S|2)− 2(3c2(n1)− α)~R · ~S

}
n2

+ c′(n1)
2c(n1)(R2 − S2)R1,

∂tS2 + c(n1)∂xS2 = 1
4c2(n1)

{
(c2(n1)− α)(|~R|2 + |~S|2)− 2(3c2(n1)− α)~R · ~S

}
n2

− c′(n1)
2c(n1)(R2 − S2)S1,

∂tR3 − c(n1)∂xR3 = 1
4c2(n1)

{
(c2(n1)− α)(|~R|2 + |~S|2)− 2(3c2(n1)− α)~R · ~S

}
n3

+ c′(n1)
2c(n1)(R3 − S3)R1,

∂tS3 + c(n1)∂xS3 = 1
4c2(n1)

{
(c2(n1)− α)(|~R|2 + |~S|2)− 2(3c2(n1)− α)~R · ~S

}
n3

− c′(n1)
2c(n1)(R3 − S3)S1,

nx =
~R−~S

2c(n1) or nt =
~R+~S

2 .

Similar to (1.14), system (2.2) has the following form of energy conservation law:

(2.3)
1

4
∂t
(
|~R|2 + |~S|2

)
− 1

4
∂x
[
c(n1)(|~R|2 − |~S|2)

]
= 0.

We define the forward and backward characteristics as follows

(2.4)

{
d
dsx
±(s, t, x) = ±c(n1(s, x±(s, t, x))),

x±|s=t = x.

Then we define the coordinate transformation:

X
def
=

∫ x−(0,t,x)

0
[1 + |~R|2(0, y)] dy, and Y

def
=

∫ 0

x+(0,t,x)
[1 + |~S|2(0, y)] dy.

This implies

(2.5) Xt − c(n1)Xx = 0, Yt + c(n1)Yx = 0.

Furthermore, for any smooth function f, we obtain by using (2.5) that

ft + c(n1)fx = (Xt + c(n1)Xx)fX = 2c(n1)XxfX

ft − c(n1)fx = (Yt − c(n1)Yx)fY = −2c(n1)YxfY .
(2.6)



6 G. CHEN, P. ZHANG, AND Y. ZHENG

Introduce

(2.7) p
def
=

1 + |~R|2

Xx
and q

def
=

1 + |~S|2

−Yx
.

Then

∂tp− c(n1)∂xp = 2(Xx)−1[~R · (∂t ~R− c(n1)∂x ~R)]

−(Xx)−2[∂tXx − c(n1)∂xXx](1 + |~R|2).

By (2.2), we have

~R · (∂t ~R− c(n1)∂x ~R) =
1

4c2(n1)

{
(c2(n1)− α)(|~R|2 + |~S|2)− 2(3c2(n1)− α)~R · ~S

}
~R · n

+
α− γ

4c2(n1)

(
|~R|2 + |~S|2 − 2~R · ~S

)
R1n1 +

c′(n1)

2c(n1)
R1(|~R|2 − ~R · ~S).

Using |n| = 1 and c′(n1) = (γ−α)n1

c(n1) , so that ~R · n = 0, we further obtain

(2.8) ~R · (∂t ~R− c(n1)∂x ~R) =
c′(n1)

4c(n1)
R1(|~R|2 − |~S|2),

which together with (2.5) applied gives

∂tp− c(n1)∂xp =
c′(n1)

2c(n1)

p

1 + |~R|2
[−R1(1 + |~S|2) + S1(1 + |~R|2)],

from which, and (2.6-2.7), we infer

pY =
1

2c(n1)(−Yx)
(pt − c(n1)px)

=
c′(n1)

4c2(n1)
pq
(
− R1

1 + |~R|2
+

S1

1 + |~S|2
)
.

(2.9)

Similarly,

∂tq + c(n1)∂xq = 2(−Yx)−1[~S · (∂t~S + c(n1)∂x~S)]

+(Yx)2(∂tYx + c(n1)∂xYx)(1 + |~S|2),

while again thanks to (2.2), we have

~S · (∂t~S − c(n1)∂x~S) =
1

4c2(n1)

{
(c2(n1)− α)(|~R|2 + |~S|2)− 2(3c2(n1)− α)~R · ~S

}
~S · n

+
α− γ

4c2(n1)

(
|~R|2 + |~S|2 − 2~R · ~S

)
S1n1 +

c′(n1)

2c(n1)
S1(|~S|2 − ~R · ~S),

which along with the fact that ~S · n = 0 leads to

(2.10) ~S · (∂t~S − c(n1)∂x~S) = − c
′(n1)

4c(n1)
S1(|~R|2 − |~S|2),

from which and (2.5), we infer

∂tq + c(n1)∂xq =
c′(n1)

2c(n1)

q

1 + |~S|2
[R1(1 + |~S|2)− S1(1 + |~R|2)].
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Then applying (2.6-2.7) gives rise to

qX =
1

2c(n1)Xx
(qt + c(n1)qx)

=
c′(n1)

4c2(n1)
pq
( R1

1 + |~R|2
− S1

1 + |~S|2
)
.

(2.11)

Now we introduce

~̀= (`1, `2, `3)
def
=

~R

1 + |~R|2
, ~m = (m1,m2,m3)

def
=

~S

1 + |~S|2
, and

h1
def
=

1

1 + |~R|2
, h2

def
=

1

1 + |~S|2
.

(2.12)

Then

∂t`1 − c(n1)∂x`1 = (1 + |~R|2)−1(∂tR1 − c(n1)∂xR1)

−2(1 + |~R|2)−2R1

[
~R · (∂t ~R− c(n1)∂x ~R)

]
,

which together with (2.2) and (2.8) imply

∂t`1 − c(n1)∂x`1 =(1 + |~R|2)−1
[c2(n1)− γ

4c2(n1)
(|~R|2 + |~S|2)− 3c2(n1)− γ

2c2(n1)
~R · ~S

]
n1

+
c′(n1)

2c(n1)
(1 + |~R|2)−2R1

[
R1(1 + |~S|2)− S1(1 + |~R|2)

]
.

Then thanks to (2.6-2.7), we obtain

∂Y `1 =
q

8c3(n1)

[
(c2(n1)− γ)(h1 + h2 − 2h1h2)− 2(3c2(n1)− γ)~̀ · ~m

]
n1

+
c′(n1)

4c2(n1)
`1q(`1 −m1).

(2.13)

Similarly thanks to (2.12), we have

∂tm1 + c(n1)∂xm1 =(1 + |~S|2)−1(∂tS1 + c(n1)∂xS1)

− 2(1 + |~S|2)−2S1

[
~S · (∂t~S + c(n1)∂x~S)

]
,

which together with (2.2) and (2.10) ensure that

∂tm1 + c(n1)∂xm1 =(1 + |~S|2)−1
[c2(n1)− γ

4c2(n1)
(|~R|2 + |~S|2)− 3c2(n1)− γ

2c2(n1)
~R · ~S

]
n1

− c′(n1)

2c(n1)
(1 + |~S|2)−2S1

[
R1(1 + |~S|2)− S1(1 + |~R|2)

]
,

from which and (2.6-2.7), we infer

∂Xm1 =
p

8c3(n1)

[
(c2(n1)− γ)(h1 + h2 − 2h1h2)− 2(3c2(n1)− γ)~̀ · ~m

]
n1

− c′(n1)

4c2(n1)
m1p(`1 −m1).

(2.14)
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Following the same line, we deduce from (2.2) and (2.8) that

∂t`2 − c(n1)∂x`2 =(1 + |~R|2)−1
[c2(n1)− α

4c2(n1)
(|~R|2 + |~S|2)− 3c2(n1)− α

2c2(n1)
~R · ~S

]
n2

+
c′(n1)

2c(n1)
(1 + |~R|2)−2R1

[
R2(1 + |~S|2)− S2(1 + |~R|2)

]
,

and

∂t`3 − c(n1)∂x`3 =(1 + |~R|2)−1
[c2(n1)− α

4c2(n1)
(|~R|2 + |~S|2)− 3c2(n1)− α

2c2(n1)
~R · ~S

]
n3

+
c′(n1)

2c(n1)
(1 + |~R|2)−2R1

[
R3(1 + |~S|2)− S3(1 + |~R|2)

]
,

which together with (2.6-2.7) ensure that

∂Y `2 =
q

8c3(n1)

[
(c2(n1)− α)(h1 + h2 − 2h1h2)− 2(3c2(n1)− α)~̀ · ~m

]
n2

+
c′(n1)

4c2(n1)
`1q(`2 −m2) and

∂Y `3 =
q

8c3(n1)

[
(c2(n1)− α)(h1 + h2 − 2h1h2)− 2(3c2(n1)− α)~̀ · ~m

]
n3

+
c′(n1)

4c2(n1)
`1q(`3 −m3).

(2.15)

While we deduce from (2.2) and (2.10) that

∂tm2 + c(n1)∂xm2 =(1 + |~S|2)−1
[c2(n1)− α

4c2(n1)
(|~R|2 + |~S|2)− 3c2(n1)− α

2c2(n1)
~R · ~S

]
n2

− c′(n1)

2c(n1)
(1 + |~S|2)−2S1

[
R2(1 + |~S|2)− S2(1 + |~R|2)

]
,

and

∂tm3 + c(n1)∂xm3 =(1 + |~S|2)−1
[c2(n1)− α

4c2(n1)
(|~R|2 + |~S|2)− 3c2(n1)− α

2c2(n1)
~R · ~S

]
n3

− c′(n1)

2c(n1)
(1 + |~S|2)−2S1

[
R3(1 + |~S|2)− S3(1 + |~R|2)

]
,

which together with (2.6-2.7) imply that

∂Xm2 =
p

8c3(n1)

[
(c2(n1)− α)(h1 + h2 − 2h1h2)− 2(3c2(n1)− α)~̀ · ~m

]
n2

− c′(n1)

4c2(n1)
m1p(`2 −m2) and

∂Xm3 =
p

8c3(n1)

[
(c2(n1)− α)(h1 + h2 − 2h1h2)− 2(3c2(n1)− α)~̀ · ~m

]
n3

− c′(n1)

4c2(n1)
m1p(`3 −m3).

(2.16)
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On the other hand, it follows from (2.8) and (2.12) that

∂th1 − c(n1)∂xh1 =− 2(1 + |~R|2)−2
[
~R · (∂t ~R− c(n1)∂x ~R)

]
=− c′(n1)

2c(n1)
(1 + |~R|2)−2R1(|~R|2 − |~S|2).

Then we obtain by using (2.6-2.7) that

(2.17) ∂Y h1 =
c′(n1)

4c2(n1)
q`1(h1 − h2).

Similar calculations together with (2.10) yield

∂th2 + c(n1)∂xh2 =
c′(n1)

2c(n1)
(1 + |~S|2)−2S1(|~R|2 − |~S|2),

which together with (2.6-2.7) imply that

(2.18) ∂Xh2 =
c′(n1)

4c2(n1)
pm1(h2 − h1).

Finally we observe from (2.6) and (2.12) that

∂Y n =
1

2c(n1)Xx
(∂tn− c(n1)∂xn) =

q

2c(n1)
~m,

∂Xn =
1

2c(n1)(−Yx)
(∂tn + c(n1)∂xn) =

p

2c(n1)
~̀.

(2.19)

In summary, we obtain

(2.20)



∂Y `1 = q
8c3(n1)

[
(c2(n1)− γ)(h1 + h2 − 2h1h2)− 2(3c2(n1)− γ)~̀ · ~m

]
n1

+ c′(n1)
4c2(n1)

`1q(`1 −m1),

∂Xm1 = p
8c3(n1)

[
(c2(n1)− γ)(h1 + h2 − 2h1h2)− 2(3c2(n1)− γ)~̀ · ~m

]
n1

− c′(n1)
4c2(n1)

m1p(`1 −m1),

∂Y `2 = q
8c3(n1)

[
(c2(n1)− α)(h1 + h2 − 2h1h2)− 2(3c2(n1)− α)~̀ · ~m

]
n2

+ c′(n1)
4c2(n1)

`1q(`2 −m2),

∂Xm2 = p
8c3(n1)

[
(c2(n1)− α)(h1 + h2 − 2h1h2)− 2(3c2(n1)− α)~̀ · ~m

]
n2

− c′(n1)
4c2(n1)

m1p(`2 −m2),

∂Y `3 = q
8c3(n1)

[
(c2(n1)− α)(h1 + h2 − 2h1h2)− 2(3c2(n1)− α)~̀ · ~m

]
n3

+ c′(n1)
4c2(n1)

`1q(`3 −m3),

∂Xm3 = p
8c3(n1)

[
(c2(n1)− α)(h1 + h2 − 2h1h2)− 2(3c2(n1)− α)~̀ · ~m

]
n3

− c′(n1)
4c2(n1)

m1p(`3 −m3),

∂Y n = q
2c(n1) ~m, (or ∂Xn = p

2c(n1)
~̀)

∂Y h1 = c′(n1)
4c2(n1)

q`1(h1 − h2), ∂Xh2 = c′(n1)
4c2(n1)

m1p(h2 − h1),

pY = − c′(n1)
4c2(n1)

pq(`1 −m1), qX = c′(n1)
4c2(n1)

pq(`1 −m1).
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2.2. Consistency of variables of (2.20). The various variables introduced for (2.20) are
consistent, following from the proposition below.

Proposition 2.1. For smooth enough data, there hold the following conservative quantities:

~̀ · n(X,Y ) = ~m · n(X,Y ) = 0, |n(X,Y )| = 1 and

|~̀(X,Y )|2 + h2
1(X,Y ) = h1(X,Y ), |~m(X,Y )|2 + h2

2(X,Y ) = h2(X,Y ), ∀ X,Y,
(2.21)

as long as

~̀ · n(X,ϕ(X)) = ~m · n(X,ϕ(X)) = 0, |n(X,ϕ(X))| = 1 and

|~̀(X,ϕ(X))|2 + h2
1(X,ϕ(X)) = h1(X,ϕ(X)),

|~m(X,ϕ(X))|2 + h2
2(X,ϕ(X)) = h2(X,ϕ(X)), ∀ X.

Here the function ϕ represents the initial curve, see (3.2) from the next section.

Proof. We first deduce from (2.20) that

∂Y
[
|~̀|2 + h2

1 − h1

]
=

q

4c3(n1)

[
(c2(n1)− α)(h1 + h2 − 2h1h2)− 2(3c2(n1)− α)~̀ · ~m

]
~̀ · n

+
(α− γ)n1

4c3(n1)
q
[
(h1 + h2 − 2h1h2)− 2~̀ · ~m

]
`1

+
c′(n1)

4c2(n1)
q`1
[
2(|~̀|2 − ~̀ · ~m) + 2h1(h1 − h2)− (h1 − h2)

]
,

from which and the fact that c′(n1) = (γ−α)n1

c(n1) , we deduce that

∂Y
[
|~̀|2 + h2

1 − h1

]
=

q

4c3(n1)

[
(c2(n1)− α)(h1 + h2 − 2h1h2)

− 2(3c2(n1)− α)~̀ · ~m
]
~̀ · n +

c′(n1)

2c2(n1)
q`1
[
|~̀|2 + h2

1 − h1

]
.

(2.22)

Similarly it follows from (2.20) that

∂Y [~̀ · n] =∂Y ~̀ · n + ~̀ · ∂Y n

=
q

8c3(n1)

[
(c2(n1)− α)(h1 + h2 − 2h1h2)− 2(3c2(n1)− α)~̀ · ~m

]
(|n|2 − 1)

+
q

8c3(n1)
(h1 + h2 − 2h1h2)

[
(c2(n1)− α) + (α− γ)n2

1

]
− q

4c3(n1)
~̀ · ~m

[
3c2(n1)− α+ (α− γ)n2

1

]
+

q

4c2(n1)
q`1[~̀ · n− ~m · n] +

q

2c(n1)
~̀ · ~m,

which along with the fact that c2(n1) = α+ (γ − α)n2
1 leads to

∂Y [~̀ · n] =
q

8c3(n1)

[
(c2(n1)− α)(h1 + h2 − 2h1h2)− 2(3c2(n1)− α)~̀ · ~m

]
(|n|2 − 1)

+
c′(n1)

4c2(n1)
q`1[~̀ · n− ~m · n].

(2.23)
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On the other hand, observe that ∂Y n = q
2c(n1) ~m is consistent with ∂Xn = p

2c(n1)
~̀. Indeed

again thanks to (2.20), one has on the one hand

∂X [∂Y n] = − c′(n1)

8c3(n1)
pq(`1 +m1)~m+

q

2c(n1)
∂X ~m,

and on the other hand

∂Y [∂Xn] = − c′(n1)

8c3(n1)
pq(`1 +m1)~̀+

p

2c(n1)
∂Y ~̀,

which along with the ~̀ equations and ~m equations of (2.20) shows that ∂X [∂Y n] = ∂Y [∂Xn].

So we can also use the equation ∂Xn = p
2c(n1)

~̀, from which and the ~m equation of (2.20), we

obtain

∂X [~m · n] =∂X ~m · n + ~m · ∂X ~̀

=
p

8c3(n1)

[
(c2(n1)− α)(h1 + h2 − 2h1h2)− 2(3c2(n1)− α)~̀ · ~m

]
(|n|2 − 1)

+
p

8c3(n1)

[
(c2(n1)− α)(h1 + h2 − 2h1h2)− 2(3c2(n1)− α)~̀ · ~m

]
+

α− γ
8c3(n1)

pn2
1

[
(h1 + h2 − 2h1h2)− 2~̀ · ~m

]
+

c′(n1)

4c2(n1)
pm1[~m · n− ~̀ · n] +

p

2c(n1)
~̀ · ~m,

which gives rise to

∂Y [~m · n] =
p

8c3(n1)

[
(c2(n1)− α)(h1 + h2 − 2h1h2)− 2(3c2(n1)− α)~̀ · ~m

]
(|n|2 − 1)

− c′(n1)

4c2(n1)
pm1[~̀ · n− ~m · n].

(2.24)

Next it is easy to observe that

(2.25) ∂Y [|n|2 − 1] =
q

2c(n1)
~m · n.

Finally, to control the evolution of |~m|2 + h2
2 − h2, we obtain by applying (2.20) that

∂X
[
|~m|2 + h2

2 − h2

]
=

p

4c3(n1)

[
(c2(n1)− α)(h1 + h2 − 2h1h2)− 2(3c2(n1)− α)~̀ · ~m

]
~m · n

+
α− γ

4c3(n1)
p
[
(h1 + h2 − 2h1h2)− 2~̀ · ~m

]
m1n1

+
c′(n1)

2c2(n1)
pm1

[
(|~m|2 − ~̀ · ~m) + (h2 −

1

2
)(h2 − h1)

]
,

which simplifies to

∂X
[
|~m|2 + h2

2 − h2

]
=

p

4c3(n1)

[
(c2(n1)− α)(h1 + h2 − 2h1h2)

− 2(3c2(n1)− α)~̀ · ~m
]
~m · n +

c′(n1)

2c3(n1)
pm1

[
|~m|2 + h2

2 − h2

]
.

(2.26)

Summing up (2.22) to (2.26) gives rise to (2.21). This completes the proof of the proposition.
�
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3. Solutions in the energy coordinates

Using (2.6) by letting f = t or x, we obtain the equations

(3.1) tX =
ph1

2c
, tY =

qh2

2c
, xX =

ph1

2
, xY =

−qh2

2
.

Only one of the two equations of tX and tY is needed for recovering t, and the two equations
are consistent since tXY = tY X . The same is true for x.

The initial line t = 0 in the (x, t) plane is transformed to a parametric curve

(3.2) γ : Y = ϕ(X)

in the (X,Y ) plane, where Y = ϕ(X) if and only if there is an x such that

(3.3)

 X =
∫ x

0 [1 + |~R|2(0, y)] dy,

Y =
∫ 0
x [1 + |~S|2(0, y)] dy.

We point out that the curve is non-characteristic. We introduce

(3.4) E0 :=
1

4

∫ [
|~R|2(0, y) + |~S|2(0, y)] dy <∞.

It equals to the number in (1.25). The two functions X = X(x), Y = Y (x) from (3.3) are
well-defined and absolutely continuous, provided that (1.2) is satisfied. Clearly, X is strictly
increasing while Y is strictly decreasing. Therefore, the map X 7→ ϕ(X) is continuous and
strictly decreasing. From (3.4) it follows

(3.5)
∣∣X + ϕ(X)

∣∣ ≤ 4E0 .

As (t, x) ranges over the domain [0,∞) × R, the corresponding variables (X,Y ) range over
the set

(3.6) Ω+ :=
{

(X,Y ) ; Y ≥ ϕ(X)
}
.

Along the curve

γ :=
{

(X,Y ) ; Y = ϕ(X)
}
⊂ R2

parametrized by x 7→
(
X(x), Y (x)

)
, we can thus assign the boundary data (~̀̄, ~̄m, h̄1, h̄2, p̄, q̄, n̄)

∈ L∞ defined by their definition evaluated at the initial data (1.2), i.e.,

n̄ = n0(x) , p̄ = 1 , q̄ = 1 ,

~̀̄= ~R(0, x)h̄1, ~̄m = ~S(0, x)h̄2,

h̄1 =
1

1 + |~R|2(0, x)
, and

h̄2 =
1

1 + |~S|2(0, x)
.

(3.7)

where
~R(0, x) = n1(x) + c(n10(x))n′0(x), ~S(0, x) = n1(x)− c(n10(x))n′0(x).

We consider solutions to the boundary value problem (2.20)(3.7)(1.3).

Theorem 3.1. The problem (2.20)(3.7)(1.2)(1.3) has a unique global solution defined for all
(X,Y ) ∈ R2.
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Sketch of Proof. In the following, we shall construct the solution on the domain Ω+ where
Y ≥ ϕ(X). On the complementary set Ω− where Y < ϕ(X), the solution can be constructed
similarly.

Observing that all equations in (2.20) have a locally Lipschitz continuous right hand side,
the construction of a local solution as fixed point of a suitable integral transformation is
straightforward. To make sure that this solution is actually defined on the whole domain Ω+,
one must establish a priori bounds, showing that the solution remains bounded on bounded
sets.

By (2.21), we have

(3.8) h1(1− h1) ≥ 0, h2(1− h2) ≥ 0.

Thus h1, h2 are bounded between zero and one, and both |~̀| and |~m| are uniformly bounded.
By the p and q equations in (2.20), we have

(3.9) pY + qX = 0

which implies that∫ X

ϕ−1(Y )
p(X ′, Y )dX ′ +

∫ Y

ϕ(X)
q(X,Y ′)dY ′ = X − ϕ−1(Y ) + Y − ϕ(X)

where ϕ−1 denotes the inverse of ϕ, following an integration over the characteristic triangle
with vertex (X,Y ). Thus, by the energy assumption (3.4), we find

(3.10)

∫ X

ϕ−1(Y )
p(X ′, Y )dX ′ +

∫ Y

ϕ(X)
q(X,Y ′) dY ′ ≤ 2(|X|+ |Y |+ 4E0).

Integrating the p equation in (2.20) vertically and use the bound on q from (3.10), we find

(3.11)

p(X,Y ) = exp
{∫ Y

ϕ(X)
c′(n1)

4c2(n1)
q(X,Y ′)(−`1 +m1) dY ′

}
≤ exp

{
C0

∫ Y
ϕ(X) q(X,Y

′) dY ′
}

≤ exp{2C0(|X|+ |Y |+ 4E0)}.
Here C0 represents a finite number. Similarly, we have

(3.12) q(X,Y ) ≤ exp{2C0(|X|+ |Y |+ 4E0)}.
Relying on the local bounds (3.11)(3.12), the local solution to (2.20)(3.7)(1.2)(1.3) can be

extended to the entire plane. One may consult paper [3] for details. This completes the
sketch of the proof.

Let us state a useful consequence of the above construction for future reference.

Corollary 3.1. If the initial data (n0,n1) are smooth, the solution U := (n, p, q, ~̀, ~m, h1, h2)
of (2.20)(3.7)(1.2)(1.3) is a smooth function of the variables (X,Y ). Moreover, assume that
a sequence of smooth functions (ni0,n

i
1)i≥1 satisfies

ni0 → n0 , (ni0)x → (n0)x , ni1 → n1

uniformly on compact subsets of R. Then one has the convergence of the corresponding
solutions:

(ni, pi, qi, ~̀i, ~mi, hi1, h
i
2)→ U

uniformly on bounded subsets of the X-Y plane.
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4. Inverse transformation

By expressing the solution n(X,Y ) in terms of the original variables (t, x), we shall recover
a solution of the Cauchy problem (1.1)∼(1.3). This will provide a proof of Theorem 1.1.

We integrate (3.1) with data t = 0, x = x on γ to find t = t(X,Y ), x = x(X,Y ), which
exist for all (X,Y ) in R2.

We need the inverse functions X = X(t, x), Y = Y (t, x). The inverse functions do not
exist as a one-to-one correspondence between (t, x) in R2 and (X,Y ) in R2. There may be a
nontrivial set of points in the (X,Y ) plane that maps to a single point (t, x). To investigate
it, we find the partial derivatives of the inverse mapping, valid at points where h1 6= 0, h2 6= 0,

(4.1) Xt =
c

ph1
, Yt =

c

qh2
, Xx =

1

ph1
, Yx = − 1

qh2
.

Thus (2.5) holds and so does (2.6) for our solution.

As a preliminary, we examine the regularity of the solution U = (n, p, q, ~̀, ...) constructed
in the previous section. Since the initial data (n0)x,n1 etc. are only assumed to be in L2,
the functions U may well be discontinuous. More precisely, on bounded subsets of the X-Y
plane, the solutions satisfy the following:

-: The functions `1, `2, , `3, h1, p are Lipschitz continuous w.r.t. Y , measurable w.r.t. X.
-: The functionsm1,m2,m3, h2, q are Lipschitz continuous w.r.t.X, measurable w.r.t. Y .
-: The vector field n is Lipschitz continuous w.r.t. both X and Y .

In order to define n as a vector field of the original variables t, x, we should formally
invert the map (X,Y ) 7→ (t, x) and write n(t, x) = n

(
X(t, x) , Y (t, x)

)
. The fact that the

above map may not be one-to-one does not cause any real difficulty. Indeed, given (t∗, x∗),
we can choose an arbitrary point (X∗, Y ∗) such that t(X∗, Y ∗) = t∗, x(X∗, Y ∗) = x∗, and
define n(t∗, x∗) = n(X∗, Y ∗). To prove that the values of n do not depend on the choice
of (X∗, Y ∗), we proceed as follows. Assume that there are two distinct points such that
t(X1, Y1) = t(X2, Y2) = t∗, x(X1, Y1) = x(X2, Y2) = x∗. We consider two cases:
Case 1: X1 ≤ X2, Y1 ≤ Y2. Consider the set

Γx∗ :=
{

(X,Y ) ; x(X,Y ) ≤ x∗
}

and call ∂Γx∗ its boundary. By (3.1), x is increasing in X and decreasing in Y . Hence,
this boundary can be represented as the graph of a Lipschitz continuous function: X − Y =
φ(X + Y ). We now construct the Lipschitz continuous curve γ consisting of

-: a horizontal segment joining (X1, Y1) with a point A = (XA, YA) on ∂Γx∗ , with
YA = Y1,

-: a portion of the boundary ∂Γx∗ ,
-: a vertical segment joining (X2, Y2) to a point B = (XB, YB) on ∂Γx∗ , with XB = X2.

Observe that the map (X,Y ) 7→ (t, x) is constant along γ. By (3.1) this implies h1 = 0 on the
horizontal segment, h2 = 0 on the vertical segment, and h1 = h2 = 0 on the portion of the
boundary ∂Γx∗ . When either h1 = 0 or h2 = 0 or both, we have from the conserved quantities

(2.22) that ~̀= 0 or ~m = 0 or both, correspondingly. Upon examining the derivatives of n in
(2.20), we have the same pattern of vanishing property. Thus, along the path from A to B,
the values of the components of n remain constant, proving our claim.
Case 2: X1 ≤ X2, Y1 ≥ Y2. In this case, we consider the set

Γt∗ :=
{

(X,Y ) ; t(X,Y ) ≤ t∗
}
,
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and construct a curve γ connecting (X1, Y1) with (X2, Y2) similarly as in case 1. Details are
entirely similar to Case 1.

We now prove that the function n(t, x) = n
(
X(t, x), Y (t, x)

)
thus obtained are Hölder

continuous on bounded sets. Toward this goal, consider any characteristic curve, say t 7→
x+(t), with dx+/dt = c(n1). By construction, this is parametrized by the function X 7→(
t(X,Y ), x(X,Y )

)
, for some fixed Y . Using the chain rule and the inverse mapping formulas

(4.1), we obtain

nt + cnx = nX(Xt + cXx) + nY (Yt + cYx) = 2cXxnX .

Thus we have

(4.2)

∫ τ
0

∣∣nt + cnx
∣∣2 dt =

∫ Xτ
X0

(2cXx|nX |)2 (2Xt)
−1dX

=
∫ Xτ
X0

(2c 1
ph1

p|~̀|
2c )2 ph1

2c dX

=
∫ Xτ
X0

p
2c
|~̀|2
h1
dX ≤

∫ Xτ
X0

p
2c dX ≤ Cτ ,

for some constant Cτ depending only on τ . Notice we have used |~̀|2 ≤ h1, which follows from
(2.21). Similarly, integrating along any backward characteristics t 7→ x−(t) we obtain

(4.3)

∫ τ

0

∣∣nt − cnx∣∣2 dt ≤ Cτ .
Since the speed of characteristics is ±c(n1), and c(n1) is uniformly positive and bounded, the
bounds (4.2)-(4.3) imply that the function n = n(t, x) is Hölder continuous with exponent 1/2.
In turn, this implies that all characteristic curves are C1 with Hölder continuous derivative.

In addition, from (4.2)-(4.3) it follows that ~R, ~S at (2.1) are square integrable on bounded

subsets of the t-x plane. However, we should check the consistency that ~R, ~S at (2.1) are

indeed the same as recovered from (2.12). Let us check only one of them, R = ~̀/h1. We find

nt + cnx = 2cXxnX = 2c
1

ph1

p~̀

2c
=

~̀

h1
.

Finally, we prove that n satisfies the equations of system (1.1) in distributional sense,
according to (iii) of Definition 1.1. We note that

(4.4)

∫∫
2
[
φtnt − φxc2nx

]
dxdt

=
∫∫

φt
[
(nt + cnx) + (nt − cnx)

]
−cφx

[
(nt + cnx)− (nt − cnx)

]
dxdt

=
∫∫ [

φt − cφx
]

(nt + cnx) dxdt
+
∫∫ [

φt + cφx
]

(nt − cnx) dxdt

=
∫∫ [

φt − cφx
]
~R dxdt+

∫∫ [
φt + cφx

]
~S dxdt .

By (2.6), this is equal to

(4.5)

∫ ∫ [
− 2cYxφY ~R + 2cXxφX ~S

]
dxdt .

Using the Jacobian

(4.6)
∂(x, t)

∂(X,Y )
=
pqh1h2

2c
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derived from (3.1), and the inverse (4.1), we see that it is equal to∫ ∫ [ 2c

qh2

~RφY +
2c

ph1

~SφX

]pqh1h2

2c
dXdY

=

∫ ∫ [
ph1

~RφY + qh2
~SφX

]
dXdY

=

∫ ∫ [
p~̀φY + q ~mφX

]
dXdY

=

∫ ∫ [
− (p~̀)Y − (q ~m)X

]
φdXdY.

(4.7)

Thanks to (2.1), (2.12) and (2.20), we have that the first component of the integrand equals
to

φ
[
−(p`1)Y − (qm1)X

]
=− φ pq

4c3

[
(c2 − γ)(h1 + h2 − 2h1h2)− 2(3c2 − γ)~̀ · ~m

]
n1

=− φpqh1h2

2c

[c2 − γ
2c2

(
1

h2
+

1

h1
− 2)− 3c2 − γ

c2

~̀ · ~m
h1h2

]
n1

=− φpqh1h2

2c

[c2 − γ
2c2

(|~R|2 + |~S|2)− 3c2 − γ
c2

~R · ~S
]
n1

=− φpqh1h2

2c

[c2 − γ
c2

(|nt|2 + c2|nx|2)− 3c2 − γ
c2

(|nt|2 − c2|nx|2)
]
n1.

=− 2φ
pqh1h2

2c

(
−|nt|2 + (2c2 − γ)|nx|2

)
n1,

which implies that the first equation in (1.1) holds in integral form. Similarly, n satisfies the
second and third equations of system (1.1) in distributional sense.

5. Upper bound on energy

We convert the energy conservation (1.21) formally to the (X,Y ) plane to look for conser-
vation of energy.

Recall that the energy conservation law (1.21) can be written as (2.3) in terms of |~R| and

|~S|. By the variables (2.12), we rewrite the equation (2.3) as(
1

4h1
+

1

4h2
− 1

2

)
t

−
[
c

4
(

1

h1
− 1

h2
)

]
x

= 0.

It yields a closed form

(5.1)

(
1

4h1
+

1

4h2
− 1

2

)
dx+

[
c

4
(

1

h1
− 1

h2
)

]
dt

which, using the formula

(5.2)
dt = tXdX + tY dY = ph1

2c dX + qh2
2c dY

dx = xXdX + xY dY = ph1
2 dX − qh2

2 dY

can be written as

(5.3)
p(1− h1)

4
dX − q(1− h2)

4
dY.
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This is the energy form in the (X,Y ) plane. The solutions n = n(X,Y ) constructed in
Section 2 are conservative, in the sense that the integral of the form (5.3) along every Lipschitz
continuous, closed curve in the X-Y plane is zero.

0

A

B

C

D

O
X

γ
Ω

Y

γ

τ

Figure 1. Energy conservation

We use (5.3) to establish that the energy of our solution is bounded, i.e., the energy
inequality (1.26). Fix τ > 0, and r >> 1. Define the set

(5.4) Ω :=
{

(X,Y ) ; 0 ≤ t(X,Y ) ≤ τ , X ≤ r , Y ≤ r
}
.

See Figure 1, where segment AD is where Y = r while segment BC is where X = r. By
construction, the map (X,Y ) 7→ (t, x) will act as follows:

A 7→ (τ, a) , B 7→ (τ, b) , C 7→ (0, c) , D 7→ (0, d) ,

for some a < b and d < c. Integrating the 1-form (5.3) along the boundary of Ω we obtain

(5.5)

∫
AB

p(1−h1)
4 dX − q(1−h2)

4 dY

=
∫
DC

p(1−h1)
4 dX − q(1−h2)

4 dY −
∫
DA

p(1−h1)
4 dX

−
∫
CB

q(1−h2)
4 dY

≤
∫
DC

p(1−h1)
4 dX − q(1−h2)

4 dY

=
∫ c
d

1
2

[
|nt|2(0, x) + c2

(
n1(0, x)

)
|nx|2(0, x)

]
dx .

On the other hand, we use (5.2) to compute∫ b

a

1

2

[
|nt|2(τ, x) + c2

(
n1(τ, x)

)
|nx|2(τ, x)

]
dx

=

∫
AB∩{h1 6=0}

p(1− h1)

4
dX −

∫
AB∩{h2 6=0}

q(1− h2)

4
dY ≤ E0.

(5.6)

Notice that the last relation in (5.5) is satisfied as an equality, because at time t = 0, along
the curve γ0 the variables h1, h2 never assume the value zero. The proof for the case τ < 0
is similar. Letting r → +∞ in (5.4), one has a → −∞, b → +∞. Therefore (5.5) and (5.6)
together imply E(t) ≤ E0, proving (1.26).
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6. Regularity of trajectories

6.1. Lipschitz continuity. In this part, we first prove the Lipschitz continuity of the map
t 7→ (n1, n2, n3)(t, ·) in the L2 distance, stated in (1.23). For any h > 0, we have

n(t+ h, x)− n(t, x) = h

∫ 1

0
nt(t+ τh, x) dτ.

Thus

(6.1) ‖ni(t+ h, x)− ni(t, x)‖L2 ≤ h
∫ 1

0
‖nit(t+ τh, ·)‖L2 dτ ≤ h

√
2E0, i = 1 ∼ 3.

6.2. Continuity of derivatives. We prove the continuity of functions t 7→ (n1t, n2t, n3t)(t, ·)
and t 7→ (n1x, n1x, n1x)(t, ·), as functions with values in Lp, 1 ≤ p < 2. (To keep tradition,
we use the exponent p here at the expense of repeating one of our primary variables.) This
will complete the proof of Theorem 1.1.

We first consider the case where the initial data (n0)x and n1 are smooth with compact
support. In this case, the solution n = n(X,Y ) remains smooth on the entire X-Y plane.
Fix a time τ . We claim that

(6.2)
d

dt
n(t, ·)

∣∣∣∣
t=τ

= nt(τ, ·)

where

(6.3) nt(τ, x) := nX Xt + nY Yt =
p ~̀

2c

c

ph1
+
q ~m

2c

c

qh2
=

~̀

2h1
+

~m

2h2
.

Notice that (6.3) defines the values of nt(τ, ·) at almost every point x ∈ R. By the inequality
(1.26), we obtain

(6.4)

∫
R

∣∣nt(τ, x)
∣∣2 dx ≤ 2 E(τ) ≤ 2 E0.

To prove (6.2), we consider the set

(6.5) Γτ := {(X,Y ) | t(X,Y ) ≤ τ},
and let γτ be its boundary. Let ε > 0 be given. There exist finitely many disjoint intervals
[ai, bi] ⊂ R, i = 1, . . . , N , with the following property. Call Ai, Bi the points on γτ such that
x(Ai) = ai, x(Bi) = bi. Then one has

(6.6) min
{
h1(P ), h2(P )

}
< 2ε

at every point P on γτ contained in one of the arcs AiBi, while

(6.7) h1(P ) > ε , h2(P ) > ε ,

for every point P along γτ , not contained in any of the arcs AiBi. Call J := ∪1≤i≤N [ai, bi],
J ′ = R \J , and notice that, as a function of the original variables, n = n(t, x) is smooth in a
neighborhood of the set {τ}× J ′. Using Minkowski’s inequality and the differentiability of n
on J ′, we can write, for i = 1 ∼ 3,

(6.8)

limh→0
1
h

(∫
R

∣∣∣ni(τ + h, x)− ni(τ, x)− hnit(τ, x)
∣∣∣pdx)1/p

≤ limh→0
1
h

(∫
J

∣∣∣ni(τ + h, x)− ni(τ, x)
∣∣∣pdx)1/p

+
(∫
J

∣∣nit(τ, x)
∣∣p dx)1/p .
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We now provide an estimate on the measure of the “bad” set J :

(6.9)

meas (J) =
∫
J dx =

∑
i

∫
AiBi

ph1
2 dX − qh2

2 dY

≤ 2ε
1−2ε

∑
i

∫
AiBi

p(1−h1)
2 dX − q(1−h2)

2 dY

≤ 4ε
1−2ε

∫
γτ

p(1−h1)
4 dX − q(1−h2)

4 dY ≤ 4ε
1−2ε E0 .

Notice that dt = 0 on γτ , so the two parts of the integral are actually equal. Now choose
q = 2/(2− p) so that p

2 + 1
q = 1. Using Hölder’s inequality with conjugate exponents 2/p and

q, and recalling (6.1), we obtain for any i = 1 ∼ 3∫
J

∣∣∣ni(τ + h, x)− ni(τ, x)
∣∣∣pdx

≤ meas (J)1/q ·
(∫

J

∣∣∣ni(τ + h, x)− ni(τ, x)
∣∣∣2dx)p/2

≤ meas (J)1/q ·
(∥∥ni(τ + h, ·)− ni(τ, ·)

∥∥2

L2

)p/2
≤ meas (J)1/q ·

(
h2
[
2E0

])p/2
.

Therefore,

lim sup
h→0

1

h

(∫
J

∣∣∣ni(τ + h, x)− ni(τ, x)
∣∣∣pdx)1/p

≤ [
4ε

1− 2ε
E0]1/pq ·

[
2E0

]1/2
.

(6.10)

In a similar way we estimate∫
J

∣∣nit(τ, x)
∣∣p dx ≤ [meas (J)

]1/q · (∫
J

∣∣∣nit(τ, x)
∣∣∣2dx)p/2 ,

(6.11)

(∫
J

∣∣nit(τ, x)
∣∣p dx)1/p

≤ meas (J)1/pq ·
[
2E0

]p/2
.

Since ε > 0 is arbitrary, from (6.8), (6.10) and (6.11) we conclude

(6.12) lim
h→0

1

h

(∫
R

∣∣∣ni(τ + h, x)− ni(τ, x)− hnit(τ, x)
∣∣∣pdx)1/p

= 0.

The proof of continuity of the map t 7→ nit is similar. Fix ε > 0. Consider the intervals
[ai, bi] as before. Since n is smooth on a neighborhood of {τ} × J ′, it suffices to estimate

lim suph→0

∫ ∣∣nit(τ + h, x)− nit(τ, x)
∣∣p dx

≤ lim suph→0

∫
J

∣∣nit(τ + h, x)− nit(τ, x)
∣∣p dx

≤ lim suph→0

[
meas (J)

]1/q · (∫J ∣∣∣nit(τ + h, x)− nit(τ, x)
∣∣∣2dx)p/2

≤ lim suph→0

[
4ε

1−2εE0

]1/q · (∥∥nit(τ + h, ·)
∥∥
L2 +

∥∥nit(τ, ·)∥∥L2

)p
≤
[

4ε
1−2εE0]1/q

[
4E0

]p
.
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Since ε > 0 is arbitrary, this proves continuity.
To extend the result to general initial data, such that (n0)x, n1 = nt|t=0 ∈ L2, we use

Corollary 3.1 and consider a sequence of smooth initial data, with (nν0)x,n
ν
1 ∈ C∞c , with

nν0 → n0 uniformly, (nν0)x → (n0)x almost everywhere and in L2, nν1 → n1 almost everywhere
and in L2.

The continuity of the function t 7→ nx(t, ·) as maps with values in Lp, 1 ≤ p < 2, is proved
in an entirely similar way.

7. Energy conservation

This part is devoted to the proof of Theorem 1.3, stating that, in some sense, the total
energy of the solution remains constant in time.

A key tool in our analysis is the wave interaction potential, defined in the smooth case by

Λ(t) :=
1

16

∫ ∫
x>y
|~R|2(t, x) |~S|2(t, y) dxdy.

To define it in the general case, for any fixed time τ , we let µτ = µ−τ + µ+
τ be the positive

measure on the real line defined as follows. In the smooth case,

(7.1) µ−τ
(

(a, b)
)

=
1

4

∫ b

a
|~R|2(τ, x) dx , µ+

τ

(
(a, b)

)
=

1

4

∫ b

a
|~S|2(τ, x) dx .

To define µ±τ in the general case, let γτ be the boundary of the set

(7.2) Γτ := {(X,Y ) | t(X,Y ) ≤ τ},

and let γτ be its boundary. Given any open interval (a, b) , let A = (XA, YA) and B =
(XB, YB) be the points on γτ such that

x(A) = a , XP − YP ≤ XA − YA for every point P ∈ γτ with x(P ) ≤ a ,

x(B) = b , XP − YP ≥ XB − YB for every point P ∈ γτ with x(P ) ≥ b .
Then

(7.3) µτ
(

(a, b)
)

= µ−τ
(

(a, b)
)

+ µ+
τ

(
(a, b)

)
,

where

(7.4) µ−τ
(

(a, b)
)

:=

∫
AB

p(1− h1)

4
dX µ+

τ

(
(a, b)

)
:= −

∫
AB

q(1− h2)

4
dY .

It is clear that µ−τ , µ+
τ are bounded, nonnegative measures, and µτ (R) = E0, for all τ . The

wave interaction potential is defined as

(7.5) Λ(t) := (µ−t ⊗ µ
+
t )
{

(x, y) ; x > y
}
.

Lemma 7.1 (Bounded variation). The map t 7→ Λ(t) has locally bounded variation; i.e.,
there exists a one-sided Lipschitz constant L0 such that

Λ(t)− Λ(s) ≤ L0 · (t− s), t > s > 0 .

Before we prove the lemma, let us first give a formal argument, valid when the solution
n(t, x) remains smooth. Thanks to (2.8) and (2.10), we obtain

∂t|~R|2 − ∂x(c|~R|2) =A,

∂t|~S|2 + ∂x(c|~S|2) =−A,
(7.6)
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where

(7.7) A =
c′(n1)

2c(n1)

(
|~R|2S1 − |~S|2R1

)
.

Then
d

dt
[16Λ(t)] ≤−

∫
2c |~R|2|~S|2 dx+

∫ (
|~S|2 + |~R|2

)
dx

∫
Adx

≤− 2CL

∫
|~R|2|~S|2 dx+ 4E0

∥∥∥∥ c′2c

∥∥∥∥
L∞

∫ ∣∣|~R|2S1 −R1|~S|2
∣∣ dx .(7.8)

For each ε > 0 we have |R1| ≤ ε−1/2 + ε1/2 |~R|2. Choosing ε > 0 such that

CL ≥ 4E0

∥∥∥∥ c′2c

∥∥∥∥
L∞
· 2
√
ε ,

we thus obtain

d

dt
[16Λ(t)] ≤ −CL

∫
|~R|2|~S|2 dx+

16 E2
0√
ε

∥∥∥∥ c′2c

∥∥∥∥
L∞
≤ 16 E2

0√
ε

∥∥∥∥ c′2c

∥∥∥∥
L∞

.

Hence, the map t 7→ Λ(t) has bounded variation on any bounded interval. It can be discon-
tinuous, with downward jumps.
Proof. We reproduce the formal argument in terms of the variables X,Y . In particular, we
reproduce (7.8) in integral form in the (X,Y ) plane. By (2.21), for any ε > 0, there exists a
constant κε such that

m1 ≤ ε(1− h2) + κεh2, `1 ≤ ε(1− h1) + κεh1.

Hence

(7.9) |(1− h1)m1 − (1− h2)`1| ≤ ε(1− h1)(1− h2) + κε[(1− h1)h2 + (1− h2)h1].

Fix 0 ≤ s < t. Consider the sets Γs,Γt as in (7.2) and define Γst := Γt\Γs. Recall that

dx dt =
pqh1h2

2c
dX dY, |~R|2 =

1− h1

h1
, |~S|2 =

1− h2

h2
.

We can write

(7.10)

∫ t
s

∫∞
−∞

|~R|2+|~S|2
4 dxdt = (t− s)E0

=
∫∫

Γst
1
4

(
1−h1
h1

+ 1−h2
h2

)
· pqh1h22c dXdY .

The first identity holds only for smooth solutions, but the second one is always valid. Recalling
(5.1) and (7.4), and then using (7.9)-(7.10), we obtain

Λ(t)− Λ(s) ≤−
∫ ∫

Γst

1− h1

4
p · 1− h2

4
q dXdY

+ 4E0 ·
∫ ∫

Γst

c′

64c2
pq| [(1− h1)m1 − (1− h2)`1] | dXdY

≤− 1

16

∫ ∫
Γst

(1− h1)(1− h2) pq dXdY

+ E0 ·
∫ ∫

Γst

c′

16c2
pq {κε · [(1− h1)h2 + (1− h2)h1]

+ε(1− h1)(1− h2)} dXdY ≤ κ(t− s) ,
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for a suitable constant κ. This proves the lemma. �
To prove Theorem 1.3, consider the three sets

Ω1 :=
{

(X,Y ) ; h1(X,Y ) = 0 , h2(X,Y ) 6= 0 ,
(
c2(n1(X,Y ))− γ

)
n1(X,Y ) 6= 0

}
,

Ω2 :=
{

(X,Y ) ; h2(X,Y ) = 0 , h1(X,Y ) 6= 0 ,
(
c2(n1(X,Y ))− γ

)
n1(X,Y ) 6= 0

}
,

Ω3 :=
{

(X,Y ) ; h1(X,Y ) = 0 , h2(X,Y ) = 0 ,
(
c2(n1(X,Y ))− γ

)
n1(X,Y ) 6= 0

}
.

Here
(
c2(n1)− γ

)
n1 6= 0 is equivalent to n1 6= ±1 or 0, since we assume that α 6= γ.

From the equations (2.20), it follows that

(7.11) meas (Ω1) = meas (Ω2) = 0 .

Indeed, ∂Y `1 6= 0 on Ω1 since h1 = 0 implies ~̀ = 0 by (2.21). Similarly ∂Xm1 6= 0 on Ω2

since h2 = 0 implies ~m = 0. And, for any i = 1 ∼ 3, `i 6= 0 implies h1 6= 0, mi 6= 0 implies
h2 6= 0, by (2.12).

Let Ω∗3 be the set of Lebesgue points of Ω3. We now show that

(7.12) meas
({
t(X,Y ) ; (X,Y ) ∈ Ω∗3

})
= 0 .

To prove (7.12), fix any P ∗ = (X∗, Y ∗) ∈ Ω∗3 and let τ = t(P ∗). We claim that

(7.13) lim sup
h,k→0+

Λ(τ − h)− Λ(τ + k)

h+ k
= +∞

Q

+
t = t’

σ

σ

*P

−t = t

Figure 2. Lebesgue point

By assumption, for any ε > 0 arbitrarily small we can find δ > 0 with the following
property. For any square Q centered at P ∗ with side of length ` < δ, there exists a vertical
segment σ and a horizontal segment σ′, as in Figure 2, such that

(7.14) meas
(
Ω3 ∩ σ

)
≥ (1− ε)` , meas

(
Ω3 ∩ σ′

)
≥ (1− ε)` ,

Call

t+ := max
{
t(X,Y ) ; (X,Y ) ∈ σ ∪ σ′

}
,

t− := min
{
t(X,Y ) ; (X,Y ) ∈ σ ∪ σ′

}
.
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Since h1 = h2 = 0 at nearly all points close to P ∗, we can assume that the endpoints of the
two segments σ, σ′ are all in Ω3. By integrating the equation for `1 from (2.20), we obtain∫

σ

q

8c3(n1)

[
(c2(n1)− γ)(h1 + h2 − 2h1h2)− 2(3c2(n1)− γ)~̀ · ~m

]
n1

+
c′(n1)

4c2(n1)
`1q(`1 −m1)dY = 0.

(7.15)

Notice that h1, ~̀ are Lipschitz in Y and h1 = 0 implies ~̀ = 0, and they are zero on σ on a
set with measure greater than (1− ε)`. So we obtain

(7.16)

∫
σ
(h1f1 + `1f2 + `2f3 + `3f4) dY = O(1)(ε`)2

for any bounded functions f1 ∼ f4. Thus we obtain from (7.15)(7.16) that

(7.17)

∫
σ

(
c2(n1)− γ

)
n1

8c3(n1)
qh2 dY = O(1)(ε`)2.

By (5.2), we have ∫
σ
tY dY =

∫
σ

qh2

2c
dY.

Assume without loss of generality that
(
c2(n1)− γ

)
n1 > C3 > 0, at the point P ∗. By (7.17),

we obtain ∫
σ
tY dY = O(1)(ε`)2.

Similarly we can estimate the growth of t in the X-direction. Combining them, we obtain

(7.18) t+ − t− ≤ O(1)(ε`)2.

On the other hand,

(7.19) Λ(t−)− Λ(t+) ≥ C1(1− ε)2`2 − C2(t+ − t−)

for some constant C1 > 0, C2 > 0. Since ε > 0 is arbitrary, this implies (7.13).
Recalling that the map t 7→ Λ has bounded variation, from (7.13) it follows (7.12).

We now observe that the singular part of µτ is nontrivial only if the set{
P ∈ γτ ; h1(P ) = 0 or h2(P ) = 0

}
has positive 1-dimensional measure. By the previous analysis, restricted to the region where(
c2(n1) − γ

)
n1 6= 0, i.e. n1 6= ±1 or 0, this can happen only for a set of times having zero

measure.
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