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Abstract

In this paper, for the p-system and full compressible Euler equa-
tions in one space dimension, we provide an equivalent and a sharp con-
dition on initial data, respectively, under which the classical solution
must break down in finite time. Moreover, we provide time-dependent
lower bounds on density for arbitrary classical solutions for these two
equations. Our results have no restriction on the size of solutions.
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1 Introduction

In this paper, we consider the initial value problem for the compressible
Euler equations in Lagrangian coordinates in one space dimension,

τt − ux = 0 , (1.1)

ut + px = 0 , (1.2)(1

2
u2 + e

)
t
+ (u p)x = 0 , (1.3)
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where ρ is the density, τ = ρ−1 is the specific volume, p is the pressure, u is
the velocity, e is the specific internal energy, t ∈ R+ is the time and x ∈ R
is the spatial coordinate. This model is used to describe the gas dynamics.
We assume that the gas is ideal polytropic, so

p = K e
S
cv τ−γ with adiabatic gas constant γ > 1 , (1.4)

and
e =

pτ

γ − 1
,

where S is the entropy, K and cv are positive constants, see [7] or [24]. For
most gases, 1 < γ < 3.

For C1 solutions, it follows that (1.3) is equivalent to the “entropy equa-
tion”:

St = 0 . (1.5)

When the entropy is constant, the flow is isentropic, then (1.1) and (1.2)
become a closed system, known as the p-system:

τt − ux = 0 , (1.6)

ut + px = 0 , (1.7)

with
p = K τ−γ , (1.8)

where, without loss of generality, we still use K to denote the constant in
pressure.

Compressible Euler equations and p-system are two of the most impor-
tant models for hyperbolic conservations laws

ut + f(u)x = 0 , (1.9)

where u = u(x, t) ∈ Rn is the unknown vector and f : Rn → Rn is the
nonlinear flux. System (1.9) typically admits discontinuity, i.e. shock wave,
even when initial data are C∞. The lack of regularity is the major difficulty
in analyzing these systems. Now the well-posedness of small total variation
solutions for (1.9) including Compressible Euler equations and p-system are
fairly well understood [1, 8]. However, large data results, which means
results without restriction on the size of solutions, are still very limited.

The main purpose of this paper is to study the breakdown of large data
classical solutions for both p-system and full Euler equations, which is re-
lated to the formation of shock wave. The previous large data results by
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Lax in [10] for p-system and the first author, R. Young and Q. Zhang in [6]
for full Euler equations do not include the most practical case 1 < γ < 3
in gas dynamics. After resolving the case when 1 < γ < 3 in this paper,
we will give a complete picture on the mechanism of breakdown of classical
solutions for both p-system and full Euler equations.

Singularity formation for hyperbolic conservation laws has been studied
by a big amount of articles. A survey on the history of these articles can be
found in [8]. In one space dimension, the singularity formation for small data
solution, i.e. solution around a constant state, has been well understood,
where we refer the reader to [9, 10, 12, 13, 18].

For large data problem, scalar conservation law has been fairly com-
pletely understood [8]. For uniformly strictly hyperbolic system with two
unknowns, Lax provided singularity formation result [10] in 1964. His result
can be directly applied to p-system (1.6)∼(1.8) when γ ≥ 3.

However Lax’s proof does not cover the p-system when 1 < γ < 3,
because the system might lose its uniformly strict hyperbolicity as density
goes to zero in infinite time. Indeed, a Riemann problems connecting two
extreme sides of two interacting strong rarefaction waves generates vacuum
instantaneously when t > 0, [24]. Smoothing out this data implies the
existence of a C1-solution such that inf(x,t) ρ(x, t)→ 0 as t→ +∞.

We can also see the difficulty of proving singularity formation from the
Riccati equation established by Lax. The p-system satisfies some Riccati
equation

y′ = −ay2 , (1.10)

where y(t) denotes some gradient variable, a is a positive function on density
and the derivative is along a characteristic direction. To prove the singularity
formation when y(0) < 0, i.e. initial data have compression, one needs to
show that ∫ ∞

0
a dt =∞ , (1.11)

where the integral is along a characteristic. For uniformly strictly hyperbolic
system or small data problem or large data problem of p-system with γ ≥
3, the leading coefficient in the Riccati equation is uniformly away from
zero hence (1.11) is clearly correct. However, for p-system with γ ∈ (1, 3),
coefficient a is vanishing as density approaches zero.

In this paper, when 1 < γ < 3, we establish a time-dependent lower
bound on density, using which we prove (1.11) and then the singularity
formation when initial data have compression together with Lax’s decom-
position. Combing with existing results when γ ≥ 3, we prove our main
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theorem for p-system: Theorem 2.4. This theorem can be understood as:

1. For p-system (1.6)∼(1.8) with smooth initial data and γ > 1, classical
solution breaks down if and only if the initial data are forward or
backward compressive somewhere.

Remark 1.1. This theorem gives a complete picture of the mechanism of
singularity formation for isentropic gas. Here a wave is compression when
gradient variable sx or rx is negative somewhere, where s and r are some
Riemann invariants in forward and backward directions respectively which
will be specified later.

Furthermore, p-system with general pressure law satisfies a similar result,
which is given in Theorem 2.9.

Then we consider the non-isentropic Euler equations (1.1)∼(1.4). Vari-
ation of entropy makes the extension of large data result from (1.6)∼(1.8)
to (1.1)∼(1.4) highly nontrivial. For example, in p-system, Riemann invari-
ants are constant along characteristics, while this is not true for full Euler
equations. And Riccati equations for full Euler equations are in a more
complicated form comparing to (1.10).

In [6], the first author, R. Young and Q. Zhang first resolved the singu-
larity formation when γ ≥ 3, when initial entropy has finite total variation.
In this case, the leading coefficient in the Riccati equation does not van-
ish when density approaches zero, on the contrary, the leading coefficient
vanishes as density approaches infinity. By studying the propagation of Rie-
mann invariants, the authors in [6] established a uniform upper bound on
density for smooth solution when initial entropy has finite total variation
and then prove the singularity formation result by analyzing the Riccati
equations found in [2, 17].

However, in the case when 1 < γ < 3, one meets a more essential dif-
ficulty comparing to the case when γ ≥ 3, similar as p-system, related to
the loss of uniformly strict hyperbolicity near vacuum. In fact, the leading
coefficient in the Riccati equation is also vanishing when density approaches
zero. One needs some lower bound estimates on density. In this paper, we
establish a time-dependent lower bound on density for any smooth solutions
in Corollary 3.7, which we believe is the first one for non-isentropic gas dy-
namics to the limit of our knowledge. Then we prove singularity formation
result for 1 < γ < 3. Our result can be understood as (see precise statement
at Theorems 3.5 and 3.10):
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2. For compressible Euler equations (1.1)∼(1.4) with smooth initial data
and γ > 1, classical solution breaks down if the initial data satisfy
some condition, describing compression, somewhere.

Remark 1.2. In Subsection 3.5, we find smooth stationary solutions without
compression showing that the conditions on initial data for singularity for-
mation provided in Theorems 3.5 is a sharp condition, under which classical
solution must break down in finite time. Shock-free examples in [5, 17, 25]
will also give us some clues why this condition is sharp.

Furthermore, the result for full Euler equations is consistent with the one
for p-system: when the initial entropy oscillation is weak enough, classical
solution must break down in finite time even when there are only weak initial
compressions.

Our results are also correct for Euler equations in Eulerian coordinates,
whose classical solution is equivalent to the one in Lagrangian coordinates,
c.f. [8, 24].

Note that the singularities we study are corresponding to shock forma-
tion, see Remark 2.6 for an explanation. At the time of the blowup, the L∞

norm of u, τ , ρ, e and S are all finite. Our conclusions are all large data
results, i.e. there are no restriction on the size of the solutions.

Other large data singularity formation results for Euler equations in one
space dimension can be found at [4, 5]. Other research works considering
the rate on which density approaches zero for specially solution can be found
at [14] for p-system and [5] for full system. And there are several papers
discussing the difficulty for the well-posedness of Euler equations caused by
the vacuum [3, 19].

For compressible Euler equations in multiple space dimensions, there
are also some singularity formation results [6, 20, 22, 23]. However, different
from the Euler equations in one space dimension, the mechanism of singular-
ity formation in multiple space dimension is still far from fully understood.

This paper is divided into three sections. In Section 2, we review Lax’s
original result in [10], then prove our singularity formation result for p-
system when 1 < γ < 3. In Section 3, we prove our results for the compress-
ible Euler equations.

2 Singularity formation for p-system

In this section, we consider singularity formation for p-system (1.6)∼(1.8).
The proof of our main theorem (Theorem 2.4) is based on the study of

Lax’s characteristic decomposition established first for general hyperbolic
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system with two unknowns in [10]. To make this paper self-contained, we
first review Lax’s decomposition in Subsection 2.1.

Then in Subsection 2.2, we apply Lax’s decomposition to p-system with
γ-law pressure and prove a singularity formation result when γ ≥ 3 using
similar argument as Lax used for general strictly hyperbolic system with
two unknowns.

Unfortunately, we could not directly use Lax’s argument when 1 < γ < 3,
because density might approach zero as time goes to infinity. To overcome
this difficulty, we need to find a time-dependent lower bound on density,
which will be done in Subsection 2.3. This finally directs to the proof of
Theorem 2.4.

Finally, in Subsection 2.4, we extend the result for p-system with γ-law
pressure to p-system with general pressure.

2.1 Lax’s result for system with two unknowns

This part is basically taken from Lax’s paper [10] in 1964. Consider a system
of two first-order partial differential equations

ut + fx = 0 ,

vt + gx = 0 ,
(2.1)

where f and g are functions of u and v. Carrying out the differentiation in
(2.1), we obtain

ut +Aux = 0 , (2.2)

where

u =

(
u
v

)
and A =

(
fu fv
gu gv

)
.

Suppose that this system is strictly hyperbolic, i.e. the matrix A has real
and distinct eigenvalues λ and µ for relevant values of u and v. Use lλ
and lµ to denote the left eigenvectors corresponding to eigenvalues λ and µ,
respectively.

Multiplying (2.2) by lλ and lµ respectively, we have

lλ · u′ = 0 , lµ · u8 = 0 ,

where we denote
′ = ∂t + λ∂x , 8 = ∂t + µ∂x .

Suppose there exists an integrating factor φ such that

w′ = φλ lλ · u′ = 0 . (2.3)
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Such φ always exists at least locally. Similarly, we have

z8 = 0

for some functions w(u, v) and z(u, v), which are called Riemann invari-
ants along characteristics with characteristic speeds λ and µ, respectively.
For general hyperbolic systems with two unknowns, there always exist two
Riemann invariants for different families, if we restrict our consideration
to the small data solution, i.e. solution which is around a constant state.
Furthermore, for p-system, there exist Riemann invariants for both charac-
teristic families for arbitrary solutions.

Then we differentiate w′ = 0 in (2.3) on x, we have

wtx + λwxx + λww
2
x + λzwxzx = 0 . (2.4)

Also by (2.3),
0 = z8 = z′ − (λ− µ)zx ,

so

zx =
z′

λ− µ
. (2.5)

Substitute (2.5) into (2.4) and denote

α := wx ,

then we have

α′ + λwα
2 +

λz
λ− µ

z′α = 0 . (2.6)

Denote by h a function of w and z which satisfies

hz =
λz

λ− µ
.

Using w′ = 0 in (2.3), we have

h′ = hww
′ + hzz

′ =
λz

λ− µ
z′ .

Substitute this into (2.6) gives

α′ + λwα
2 + h′α = 0 . (2.7)

Multiplying (2.7) by eh and denoting

α̃ := ehα ,
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we have
α̃′ = a(t)α̃2 (2.8)

with
a(t) := −e−hλw .

This Riccati equation gives us a framework for studying the singularity
formation and global existence of classical solutions for hyperbolic system
with two unknowns. In fact, we could formally solve gradient variable α̃
along a characteristic with speed λ:

1

α̃(t)
=

1

α̃(0)
+

t

↗
∫
0

a(t) dt

where the integral is taken on a characteristic with speed λ.
For simplicity, suppose that a(t) is always non-zero, which is also satisfied

by the solution of p-system if initially a 6= 0. Without loss of generality, we
only consider the case that a(t) > 0. If α̃(0) < 0, i.e. initial solution is
compressive somewhere in the λ direction, then α̃(t) breaks down under an
extra condition that

t

↗
∫
0

a(t) dt =∞ . (2.9)

In Lax’s original proof of singularity formation result, he only consider
the hyperbolic system with uniformly strict hyperbolicity, i.e. characteristic
speeds λ and µ are uniformly away from each other. In this case, a(t) has
a positive lower bound hence (2.9) is automatically correct. If we restrict
our consideration to small data problems, the function a(t) also has positive
lower bound if it initially has one.

However, for large data problem, a(t) does not in general have positive
lower bound, even for one of the most important example of (2.1): p-system
(1.6)∼(1.8) with 1 < γ < 3. Hence, Lax’s result only covers special hyper-
bolic systems with two unknowns when we consider large data problems,
such as p-system (1.6)∼(1.8) with γ ≥ 3.

To resolve this issue for p-system with 1 < γ < 3, in this paper, we
establish a time dependent lower bound on a(t) which helps proving (2.9)
hence directs to a singularity formation result. Detail is given in Subsection
2.3.
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2.2 Application of Lax’s result to p-system

We apply Lax’s decomposition and singularity formation result to the Cauchy
problem of (1.6)∼(1.8) with smooth initial data u(x, 0) and τ(x, 0).

We use the following coordinates, c.f. [2]. Denote

η :=

∫ ∞
τ

c dτ = 2
√
Kγ

γ−1 τ−
γ−1
2 > 0 , (2.10)

where the nonlinear Lagrangian sound speed c is

c :=
√
−pτ =

√
K γ τ−

γ+1
2 . (2.11)

It follows that

τ = Kτ η
− 2
γ−1 ,

p = Kp η
2γ
γ−1 , (2.12)

c =
√
−pτ = Kc η

γ+1
γ−1 ,

where Kτ , Kp and Kc are positive constants given by

Kτ :=
(2
√
Kγ

γ − 1

) 2
γ−1

, Kp := KK−γτ , and Kc :=
√
KγK

− γ+1
2

τ , (2.13)

so that also
Kp = γ−1

2γ Kc and KτKc = γ−1
2 . (2.14)

In this paper, we always use K with some subscripts to denote positive
constants. We will not notify the reader again if there is no ambiguity.

The forward and backward characteristics are described by

dx

dt
= c and

dx

dt
= −c ,

and we denote the corresponding directional derivatives along these by

∂+ := ∂
∂t + c ∂

∂x and ∂− := ∂
∂t − c

∂
∂x ,

respectively. Furthermore, the Riemann invariants are

r := u− η and s := u+ η , (2.15)

which satisfy
∂+s = 0 and ∂−r = 0 , (2.16)
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respectively.
Then we denote gradient variables

y := η
γ+1

2(γ−1) sx and q := η
γ+1

2(γ−1) rx ,

and show y and q satisfy following Riccati equations:

Lemma 2.1. For C1 solutions of (1.6)-(1.8), we have

∂+y = −a2 y
2 , (2.17)

∂−q = −a2 q
2 , (2.18)

where

a2 := Kc
γ+1

2(γ−1) η
3−γ

2(γ−1) . (2.19)

This lemma is an easy corollary of Lax’s decomposition (2.8), where the
detail calculation can be found in [2].

Proposition 2.2. (A corollary from [10]) Assume that initial data u(x, 0)
and τ(x, 0)) are C1, |u(x, 0)|, τ(x, 0), |sx(x, 0)| and |rx(x, 0)| are uniformly
bounded above, and τ(x, 0) is uniformly away from zero. When γ ≥ 3,
classical solution of (1.6)∼(1.8) breaks down if

sx(x, 0) < 0 or rx(x, 0) < 0 . (2.20)

Proof. We will show that if sx(x, 0) < 0 or rx(x, 0) < 0 for some x, then
singularity forms in finite time. Without loss of generality, we assume that
sx(x∗, 0) < 0, then y(x∗, 0) < 0 for some x∗. Then we denote the forward
characteristic passing (x∗, 0) as x+(t). By (2.17),

1

y(x+(t), t)
=

1

y(x∗, 0)
+

t

↗
∫
0

a2 dt , (2.21)

where recall
a2 = Kc

γ+1
2(γ−1) η

3−γ
2(γ−1) .

By (2.15) and (2.16), η is uniformly bounded above, so a2 has a positive
constant lower bound when γ ≥ 3, hence right hand side of (2.21) approaches
zero in finite time, which means singularity happens in finite time.

However, when 1 < γ < 3, the function a2 does not have constant posi-
tive lower bound, because the density has no constant positive lower bound.
For example, in the interaction between two strong rarefaction simple waves,
the density approaches zero as time goes to infinity.
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2.3 Breakdown of classical solutions in p-system when 1 <
γ < 3

In this section, we prove the singularity formation for the Cauchy problem
in p-system when 1 < γ < 3, by providing a time dependent positive lower
bound on density.

Before showing the main theorem, we first give a lemma:

Lemma 2.3. For C1 solutions of (1.6)-(1.8), we have a priori bounds

y(x, t) ≤ max
{

0, sup
x
{y(x, 0)}

}
=: Y

and q(x, t) ≤ max
{

0, sup
x
{q(x, 0)}

}
=: Q .

Proof. This Lemma is easily proved by Lemma 2.1.

Then we give the first main theorem in this paper.

Theorem 2.4. Assume that initial data (u(x, 0), τ(x, 0)) are C1, |u(x, 0)|,
τ(x, 0), |sx(x, 0)| and |rx(x, 0)| are uniformly bounded above, and τ(x, 0) is
uniformly away from zero. Global-in-time classical solution of (1.6)∼(1.8)
with γ > 1 exists if and only if

sx(x, 0) ≥ 0 and rx(x, 0) ≥ 0, for any x . (2.22)

Remark 2.5. At a point (x, t), the solution is said to be forward rarefactive
(resp. compressive) if sx(x, t) ≥ 0 (resp. sx(x, t) < 0); the solution is
said to be backward rarefactive (resp. compressive) if rx(x, t) ≥ 0 (resp.
rx(x, t) < 0).

Hence the theorem can be understood as that classical global-in-time solu-
tion of p-system exists if and only if the initial data are nowhere compressive.

If (2.22) is not satisfied, gradient blowup happens in finite time.

Proof. Step (1). Sufficiency. This part can be proved by standard local

existence and global a priori C1 estimates argument, c.f. [11], under the
help of the lower bound of density provided in [14].

To make this paper self-contained, we give the sketch of proof. One can
first prove the local-in-time existence of classical solutions for (1.6)∼(1.8),
c.f. [11], where the life-span depends on the C1-norm of u and τ and the
positive lower bound on τ in the initial data. Then to extend the local-in-
time existence of classical solution to global-in-time existence, we only have
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to get global a priori C1 bounds on u and τ and the positive lower bound
on τ for classical solutions. In fact, the upper bound on density and |u|
can be easily found by studying (2.16). Furthermore, Lemma 2.1 and (2.22)
tell us that y and q are always nonnegative, while Lemma 2.3 gives us the
upper bounds on y and q. Finally, the classical solution also satisfies the
time-dependent density lower bound in [14] when (2.22) is satisfied by the
weak-strong uniqueness, c.f. [8].

Step (2). Necessity. We only have to consider the case 1 < γ < 3, in
which a2 does not have positive lower bound. In fact, it is enough to show
that

lim
t→∞

t

↗
∫
0

a2 dt =∞ .

Via the definition of c in (2.12), (2.16) and Lemma 2.3, we have

st = −csx = −Kc η
γ+1

2(γ−1) y ≥ −Kc η
γ+1

2(γ−1)Y ,

and
rt = crx = Kc η

γ+1
2(γ−1) q ≤ Kc η

γ+1
2(γ−1)Q .

Hence
(s− r)t ≥ −Kc η

γ+1
2(γ−1) (Y +Q) ,

so by (2.15),

ηt ≥ −
Kc

2
η

γ+1
2(γ−1) (Y +Q) .

Dividing the above inequality by η
γ+1

2(γ−1) , then integrating both sides on t,
we have

−2(γ − 1)

3− γ
(η(x, t))

γ−3
2(γ−1) +

2(γ − 1)

3− γ
(η(x, 0))

γ−3
2(γ−1) ≥ −Kc

2
(Y +Q)t .

Hence, when 1 < γ < 3, using (2.10) we have

τ(x, t) ≤
{
K0

[
τ

3−γ
4 (x, 0) +

Kc

2
(Y +Q)t

]} 4
3−γ

.

So

a2 ≥ K00 ·
{
K0

[
τ

3−γ
4 (x, 0) +

Kc

2
(Y +Q)t

]}−1

.
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Hence,
∞

↗
∫
0

a2 dt =∞ ,

since τ
3−γ
4 (x, 0) and Y +Q are bounded. So we prove singularity formation

when 1 < γ < 3. The proof of the theorem is completed.

Remark 2.6. Finally, we give a remark why the singularity in Theorem 2.4
is in fact a shock wave satisfying Lax entropy condition.

First, at (x∗, t∗) where the first singularity formation happens, there are
some characteristics in the same family interacting with each other. Let’s
prove it by contradiction. Assume there are no characteristics in the same
family interacting with each other at or before time t∗, then C1 solution
exists when t ∈ [0, t∗], which is contradict to the singularity formation at
time t∗.

t

x0

(x*, t*)

l1 l2

S+S-

Figure 1: Shock formation

Hence, without loss of generality, we could find two characteristics l1
and l2 interacting with each other (see Figure 1) at (x∗, t∗), and sx < 0 in
the region between l1 and l2 near (x∗, t∗) on (x, t)-plane, because sx → −∞
when (x, t) approaches (x∗, t∗). Hence the solution is discontinuous when
singularity forms because

lim
x→x∗−

s(x, t∗) < lim
x→x∗+

s(x, t∗).

Finally we check the Lax entropy condition. For smooth solutions before
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blowup, by (1.6)∼(1.7) and (2.10)∼(2.16),

−csx = st

= ut + ηt

= −px + ηt

= ∂−η .

So ∂−c→ +∞ when (x, t) approaches (x∗, t∗), hence the solution is discon-
tinuous when singularity forms, and the Lax entropy condition is satisfied
on the discontinuity.

2.4 p-system with general pressure law

In this subsection, we consider the p-system (1.6)∼(1.7) with general C3

pressure p(τ) satisfying
pτ < 0, pττ > 0 (2.23)

and

lim
τ→0

p(τ) =∞, lim
τ→∞

p(τ) = 0 and

∫ ∞
1

√
−pτ dτ <∞ (2.24)

where condition (2.23) is dictated by physics when one uses (1.6)∼(1.7) to
model gas dynamics, c.f. [21]. Furthermore, we assume that∫ 1

0

√
−pτ dτ =∞ (2.25)

which includes the γ-law pressure case.
Applying Lax’s decomposition to this case we easily have the following

proposition, where the detail calculation can be found in [4]

Proposition 2.7. [4] The smooth solutions of (1.6)∼(1.7) satisfy

y′ = −a(τ)y2, (2.26)

q8 = −a(τ)q2, (2.27)

where

a(τ) :=
pττ

4(−pτ )
5
4

> 0, (2.28)

and
y :=

√
c sx, q :=

√
c rx, (2.29)
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with Lagrangian wave speed

c ≡ c(v) =
√
−pτ ,

and Riemann invariants

s := u+
∫ 1
τ c(τ)dτ and r := u−

∫ 1
τ c(τ)dτ.

Furthermore,
st + csx = 0 and rt − crx = 0 . (2.30)

Secondly, we have the following lemma as same as Lemma (2.3).

Lemma 2.8. For C1 solutions of (1.6)-(1.7) and (2.23), we have a priori
bounds

y(x, t) ≤ max
{

0, sup
x
{y(x, 0)}

}
=: Y

and q(x, t) ≤ max
{

0, sup
x
{q(x, 0)}

}
=: Q .

Then we could state our theorem for the general pressure law case.

Theorem 2.9. Assume that initial data (u(x, 0), τ(x, 0)) are C1, |u(x, 0)|,
τ(x, 0), |sx(x, 0)| and |rx(x, 0)| are uniformly bounded above, and τ(x, 0) is
uniformly away from zero. The pressure satisfies (2.23)∼(2.25). Further-
more, assume there exists some positive constant A, such that for any τ > 0,

(5 +A)(pττ )2 − 4pτpτττ ≥ 0 . (2.31)

Then global-in-time classical solution of (1.6)∼(1.7) exists if and only if

sx(x, 0) ≥ 0 and rx(x, 0) ≥ 0, for any x . (2.32)

Remark 2.10. It is clear that for the singularity formation, conditions
(2.24)∼(2.25) are not necessary.

Condition (2.31) is a fairly mild assumption because the constant A can
be arbitrarily large. For example, the γ-law pressure p = kτ−γ with γ > 0
satisfies conditions (2.31) and (2.23), and the pressure p = kτ−γ with γ > 1
satisfies conditions (2.31) and (2.23)∼(2.25).

Proof. We first remark on a fact for later references. By (2.30), (2.25), it is
easy to see that τ has a uniform lower bound. We denote that

τmin = min
(x,t)∈R×R+

τ(x, t)
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which is a positive constant only depending on the maximum values of
|s(x, 0)| and |r(x, 0)|. Then it is easy to check that c has a uniform up-
per bound by (2.23).

If condition (2.32) holds, the global existence could be proved in an
entirely similar way as we introduced in Theorem 2.4 together with the
lower bound on density provided in [14].

If condition (2.32) fails, by a similar argument in Theorem 2.4, in order
to prove singularity formation in finite time, we only have to show∫ ∞

0
a(τ(x(t), t) dt =∞ . (2.33)

Hence it is sufficient to show that

1

a(τ(x, t))
=

4(−pτ )
5
4

pττ
≤ K1 +K2t (2.34)

for some positive K1 and K2.
Then we prove (2.34). By Proposition 2.7, we have

1

2
(y + q) =

1

2

√
c(sx + rx) =

√
c ux =

√
c τt,

then by Lemma 2.8 we have(∫ τ

τmin

(−pτ (τ))
1
4 dτ

)
t

=
(∫ τ

τmin

√
c(τ) dτ

)
t

=
1

2
(y + q) ≤ 1

2
(Y +Q)

Hence∫ τ(x,t)

τmin

(−pτ (τ))
1
4 dτ ≤

∫ τ(x,0)

τmin

(−pτ (τ))
1
4 dτ+

1

2
(Y +Q)t ≤ K3+K4t (2.35)

for some positive constants K3 and K4.
Compare (2.34) and (2.35), and use τ > τmin > 0, then it is easy to see

that in order to get (2.34) we only have to show that

(4(−pτ )
5
4

pττ

)
τ
≤ A(−pτ (τ))

1
4 , (2.36)

for some positive constant A. In fact, inequality (2.36) means that the
left hand side of (2.34) grows slower than the left hand side of (2.35) as τ
increases. It is easy to see that (2.36) is correct because of (2.31). Hence
we finish the proof of this Theorem.
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3 Compressible Euler equations

In this section, we consider the Cauchy problem of compressible Euler equa-
tions (1.1)∼(1.4) with given smooth initial data (u(x, 0), τ(x, 0), S(x, 0)).
We will establish a time-dependent lower bound on density for smooth solu-
tions, then prove the main singularity formation results: Theorems 3.5 and
3.10.

We will provide our result through several steps. We first introduce
the coordinates and equations which are basically from [2], then review
the uniform upper bound on density and velocity established in [6], and
finally provide the lower bound on density and prove Theorem 3.5 when
initial entropy has finite total variation and Theorem 3.10 when entropy has
infinite total variation.

Finally, in Subsection 3.5, we explain why the condition on initial data
for singularity formation in our Theorems are the best we could expect.

3.1 Equations and coordinates

We use the coordinates used in [2]. And all detail calculation in this sub-
section can be found in [2] or [6]. Define new variables (m, η) for (S, τ),
by

m := e
S

2cv > 0 (3.1)

and

η :=

∫ ∞
τ

c

m
dτ = 2

√
Kγ

γ−1 τ−
γ−1
2 > 0 , (3.2)

where the nonlinear Lagrangian sound speed c is

c :=
√
−pτ =

√
K γ τ−

γ+1
2 e

S
2cv . (3.3)

Without confusions, we still use η and c for full Euler equations. In fact,
functions η and c in p-system equals to η and c for full Euler equations
when m = 1, respectively. Similarly, in this section, if we use the same
letter as in p-system to denote a function, this function is extended form
the corresponding function in p-system, which should have no ambiguity.

It follows that

τ = Kτ η
− 2
γ−1 ,

p = Kpm
2 η

2γ
γ−1 , (3.4)

c = c(η,m) = Kcmη
γ+1
γ−1 .
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In these coordinates, for C1 solutions, equations (1.1)–(1.3) are equiva-
lent to

ηt +
c

m
ux = 0 , (3.5)

ut +mcηx + 2
p

m
mx = 0 , (3.6)

mt = 0 , (3.7)

where the last equation comes from (1.5), which is equivalent to (1.3), c.f.
[8, 24]. Note that, while the solution remains C1, m = m(x) is given by the
initial data and can be regarded as a stationary quantity.

We denote the Riemann invariants by

r := u−mη , s := u+mη . (3.8)

Different from the isentropic case (m constant), for general non-isentropic
flow, s and r vary along characteristics.

The forward and backward characteristics are described by

dx

dt
= c and

dx

dt
= −c , (3.9)

and we denote the corresponding directional derivatives along these by

∂+ := ∂
∂t + c ∂

∂x and ∂− := ∂
∂t − c

∂
∂x ,

respectively. Using (3.8), (3.4) and (2.14), equations (3.5) and (3.6) give

∂+s =
1

2γ

cmx

m
(s− r) , (3.10)

∂−r =
1

2γ

cmx

m
(s− r) . (3.11)

Then we introduce gradient variables

y := m
− 3(3−γ)

2(3γ−1) η
γ+1

2(γ−1) ((u+mη)x − 2
3γ−1 mx η) and

q := m
− 3(3−γ)

2(3γ−1) η
γ+1

2(γ−1) ((u−mη)x + 2
3γ−1 mx η) , (3.12)

and derive Riccati type equations for their evolution:

Lemma 3.1. [2] For C1 solutions of (1.1)∼(1.4), we have

∂+y = a0 − a2 y
2,

∂−q = a0 − a2 q
2, (3.13)
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where

a0 := Kc
γ

[ γ−1
3γ−1 mmxx − (3γ+1)(γ−1)

(3γ−1)2
m2
x

]
m
− 3(3−γ)

2(3γ−1) η
3(γ+1)
2(γ−1)

+1
,

a2 := Kc
γ+1

2(γ−1) m
3(3−γ)
2(3γ−1) η

3−γ
2(γ−1) . (3.14)

Furthermore,

|y| or |q | → ∞ iff |ux | or |τx | → ∞ . (3.15)

The proof of this lemma can be found in [2]. The decomposition (3.13),
which is generalized from the Lax’s decomposition in [10] for hyperbolic
system with two unknowns, was first provided by [17], and then found in [2]
independently through another explanation.

3.2 Uniform upper bound on density

In this part, we review a result on the uniform upper bounds for |u| and ρ
provided by G. Chen, R. Young and Q. Zhang in [6], for later references.

Assume that the initial entropy S(x) is C1 and has finite total variation,
so that

V :=
1

2cv

∫ +∞

−∞
|S′(x)| dx =

∫ +∞

−∞

|m′(x)|
m(x)

dx <∞ , (3.16)

while also, by (3.1),
0 < ML < m(·) < MU , (3.17)

for some constants ML and MU . Also, we assume that ρ > 0 and |u| are
bounded above initially. Hence, there exist positive constants Ms and Mr,
such that, in the initial data,

|s0(·)| < Ms and |r0(·)| < Mr . (3.18)

In this section, we always assume (3.16)∼(3.18).
We define two useful constants by

N1 := Ms + V Mr + V (V Ms + V
2
Mr) e

V
2

,

N2 := Mr + V Ms + V (V Mr + V
2
Ms) e

V
2

,

where

V :=
V

2γ
,

which clearly depend only on the initial data. By below proposition in [6],
|u| and ρ are shown to be uniformly bounded above.
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Proposition 3.2. [6] Assume system (1.1)∼(1.4), with provided initial data
satisfying (3.16)∼(3.18), has a C1 solution when t ∈ [0, T ), then one has the
uniform bounds

|u(x, t)| ≤ N1 +N2

2
MU

1
2γ and ρ(x, t) ≤ N1 +N2

2
ML

1
2γ
−1
, (3.19)

where T can be any positive number or infinity. And the bounds are inde-
pendent of T .

3.3 Singularity formation when entropy has finite total vari-
ation

For full Euler equations, the major difficulty we need to overcome in this
paper is still how to find the time dependent lower bound on density when
1 < γ < 3. We first give a lemma to define a positive constant N for later
use.

Lemma 3.3. Assume the initial data u(x, 0) and τ(x, 0) are C1 and uni-
formly bounded above, the initial entropy S(x, 0) is C2 and has bounded
variation. Furthermore, suppose there is a positive constant M∗ such that
the initial entropy satisfies |m′′(x)| < M∗. Then, for C1 solution of system
(1.1)∼(1.4), there exists a positive constant N depending only on the initial
data, such that √

a0

a2
≤ N if a0 ≥ 0 . (3.20)

Furthermore, if y or q is larger than N or less than −N at (x, t), then

∂+y = a0 − a2 y
2 < 0 or ∂−q = a0 − a2 q

2 < 0 at (x, t) , (3.21)

respectively.

Proof. Clearly, the assumptions in Proposition 3.2 are also satisfied, by the
assumptions in this lemma. Then by Proposition 3.2 and (3.2), we know η
has a global upper bound depending only on the initial data, denoted via
EU .

By (3.14), it is easy to calculate that, if a0 ≥ 0,√
a0

a2
=

√
2(γ−1)2

γ(γ+1)(3γ−1)

(
mmxx − 3γ+1

3γ−1 m
2
x

)
η

γ+1
2(γ−1)

+1
m
− 3(3−γ)

2(3γ−1) , (3.22)
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which implies the uniform bound
√
a0/a2 ≤ N , where

N :=


√

2(γ−1)2

γ(γ+1)(3γ−1) M∗ E
3γ−1
2(γ−1)

U M
3γ−5
3γ−1

L , 1 < γ ≤ 5/3 ,√
2(γ−1)2

γ(γ+1)(3γ−1) M∗E
3γ−1
2(γ−1)

U M
3γ−5
3γ−1

U , γ ≥ 5/3 ,
(3.23)

where ML and MU are defined in (3.17).
By (3.20) and (3.13), (3.21) is clearly correct.

Next we prove a key lemma.

Lemma 3.4. For C1 solutions of (1.1)∼(1.4) with initial data satisfying
(3.16)∼(3.18) and |mxx| is uniformly bounded above, we have

y(x, t) ≤ max
{
N, sup

x
{y(x, 0)}

}
=: Ȳ ,

and q(x, t) ≤ max
{
N, sup

x
{q(x, 0)}

}
=: Q̄ .

Proof. Without loss of generality, we only prove the inequality for y. Then
the inequality for q will be proved in an entirely same way.

We prove the inequality for y by contradiction. Assume that

y(x∗, t∗) > max
{
N, sup

x
{y(x, 0)}

}
. (3.24)

We use Γ(t) with t ∈ [t̄, t∗] to denote the largest connected piece of forward
characteristic x+(t) containing (x∗, t∗) as its upper endpoint, such that

y(x+(t), t) ≥ y(x∗, t∗)

for any points (x+(t), t) on Γ(t).
Since

y(x+(0), 0) ≤ max
{
N, sup

x
{y(x, 0)}

}
< y(x∗, t∗) ,

hence
t̄ > 0 ,

then by the definition of Γ(t), we have

y(x+(t̄ ), t̄ ) = y(x∗, t∗) .
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On the other hand, by the note before this Lemma, we know

d

dt
y(x+(t), t) < 0, when t = t∗,

hence t̄ < t∗ and there exists some t̂ ∈ (t̄, t∗) such that

y(x+(t̂ ), t̂ ) > y(x∗, t∗) .

So
y(x+(t̄ ), t̄ ) = y(x∗, t∗) < y(x+(t̂ ), t̂ ) .

However, this is impossible because y is decreasing on t on Γ with t ∈ [t̄, t∗]
by (3.21) and (3.24).

Hence we find a contradiction. So the lemma is proved.

This lemma is consistent with Lemma 2.3 for p-system. In fact, in p-
system, N = 0.

Finally we prove our main theorem for full compressible Euler equations.

Theorem 3.5. Assume that the initial data u(x, 0) and τ(x, 0) are C1,
|u(x, 0)|, τ(x, 0), y(x, 0) and q(x, 0) are uniformly bounded above, τ(x, 0)
is uniformly away from zero, and S(x, 0) is C2 and has bounded variation.
Furthermore, suppose there is a positive constant M∗ such that the initial
entropy satisfies |m′′(x)| < M∗. Then, for system (1.1)∼(1.4), there exists a
positive constant N defined in (3.23) which depends only on the initial data,
such that, if the initial data satisfy

inf
{
y(·, 0), q(·, 0)

}
< −N , (3.25)

then |ux| and/or |τx| blow up in finite time.

Remark 3.6. When γ ≥ 3, this theorem has already been proved in [6]. To
make the paper self-contained, we will still give the proof of this case.

Proof. Suppose that (3.25) holds. Without loss of generality, we can assume
that inf y < −N . In fact the case when inf q < −N can be proved in an
entirely same way. Then there exist ε > 0 and x0 such that

y(x0, 0) < −(1 + ε)N . (3.26)
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Now considering the solution y(t) on the forward characteristic Γx0(t)
starting at (x0, 0). Along this characteristic Γx0(t) , by Lemma 3.3 and
recall (3.26), we have

∂+y(t) < 0 and y(t) < −(1 + ε)N for any t ≥ 0 ,

which together with (3.20) implies that for all t ≥ 0,

a0 − a2
y2(t)

(1 + ε)2
< 0 ,

hence by (3.13) and a2 > 0,

∂+y(t) = a0 − a2 y
2(t) <

(
− 1 + 1

(1+ε)2

)
a2 y

2(t) < 0 .

Integrating it, we get

1

y(t)
≥ 1

y(0)
+

t

↗
∫
0

(
1− 1

(1+ε)2

)
a2 dt , (3.27)

where the integral is along the forward characteristic.

Case when γ ≥ 3. By (3.14) and Proposition 3.2, a2 is positive and
bounded above, so the right hand side of (3.27) approaches zero in finite
time. This implies that y(t) approaches −∞ in finite time, so that |τx|
and/or |ux| blow up. This is a known result in [6] as discussed in Remark
3.6.

Case when 1 < γ < 3. To prove the singularity formation in finite time,
we only have to show

∞

↗
∫
0

a2 dt =∞ ,

by establishing a similar time dependent lower bound on density as the one
for p-system. In fact, by (3.10)∼(3.11) and Lemma 3.4,

st = −c sx +
1

2γ

cmx

m
(s− r)

= −Kcm
3γ+7

2(3γ−1) η
γ+1

2(γ−1) y −Kc
2

3γ − 1
mxmη

2γ
γ−1 +

1

2γ

cmx

m
(s− r)

≥ −K2η
γ+1

2(γ−1) Ȳ −K3η
γ+1

2(γ−1) +
1

2γ

cmx

m
(s− r) ,
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where to get positive constants K2 and K3, we need to use the uniform
upper bound on density and bounds on initial entropy. Similarly

rt = c rx +
1

2γ

cmx

m
(s− r)

= Kcm
3γ+7

2(3γ−1) η
γ+1

2(γ−1) q −Kc
2

3γ − 1
mxmη

2γ
γ−1 +

1

2γ

cmx

m
(s− r)

≤ K2η
γ+1

2(γ−1) Q̄+K3η
γ+1

2(γ−1) +
1

2γ

cmx

m
(s− r) .

Clearly, Ȳ and Q̄ are both finite constants. Then we have

2mηt = (s− r)t ≥ −[K2(Ȳ + Q̄) + 2K3] η
γ+1

2(γ−1) .

So
ηt ≥ −K4[K2(Ȳ + Q̄) + 2K3] η

γ+1
2(γ−1)

because m defined in (3.1) has positive lower bound. Similar as in p-system,
we have when 1 < γ < 3,

τ(x, t) ≤
{
K5

[
τ

3−γ
4 (x, 0) +K4

(
K2(Ȳ + Q̄) + 2K3

)
t
]} 4

3−γ
.

Hence

a2 ≥ K6

{
τ

3−γ
4 (x, 0) +K4

(
K2(Ȳ + Q̄) + 2K3

)
t
}−1

, (3.28)

which gives

lim
t→∞

t

↗
∫
0

a2 dt =∞ .

Hence, singularity forms in finite time.

Corollary 3.7. Suppose all assumptions in Theorem 3.5 hold. Then when
1 < γ < 3,

τ(x, t) ≤
{
K5

[
τ

3−γ
4 (x, 0) +K4

(
K2(Ȳ + Q̄) + 2K3

)
t
]} 4

3−γ
.

See the definitions of positive constants of K2∼K5, Ȳ and Q̄ in the proof of
Theorem 3.5.
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3.4 Singularity formation when entropy has infinite total
variation

In this section, we consider the singularity formation when the entropy has
infinite total variation on the whole real line but finite total variation on any
bounded interval, i.e. entropy is local BV, which includes interesting cases
such as periodic solutions.

Since when we prove (3.19) for ρ(x, t) and |u(x, t)| in [6], we only have
to consider the domain of dependence of the point (x, t). Hence, we can
get similar upper bounds on density and velocity as those in (3.19) in below
remark on a domain of dependence, when initial entropy is only local BV.

Remark 3.8. Consider the domain of dependence of a point (Xx,z, Tx,z),
in Figure 2, which is denoted by Ωx,z, where [x, z] is the intersection interval
of the domain of dependence and the initial line t = 0.

t

x

Tx,z

x z

x,zΩ

0

(Xx,z, )

Figure 2: A domain of dependence Ωx,z

We still assume (3.17)∼(3.18). But instead of (3.16), we suppose that
S is C1 and local BV, which shows

Vx,z :=
1

2cτ

∫ z

x
|S′(x̄)| dx̄ =

∫ z

x

|m′(x̄)|
m(x̄)

dx̄ <∞ . (3.29)

By the same proof in [6], it is easy to get, for any point (x̄, t) in Ωx,z

|u(x̄, t)| ≤
N1x,z +N2x,z

2
MU

1
2γ and ρ(x̄, t) ≤

N1x,z +N2x,z

2
ML

1
2γ
−1

(3.30)
with

N1x,z := Ms + V̄x,zMr + V̄x,z (V̄x,zMs + V̄ 2
x,zMr) e

V̄ 2
x,z ,

N2x,z := Mr + V̄x,zMs + V̄x,z (V̄x,zMr + V̄ 2
x,zMs) e

V̄ 2
x,z ,
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where

V̄x,z :=
Vx,z
2γ

.

Remark 3.9. Still under the assumptions and notations in Remark 3.8, we
introduce some new notations for later reference. We denote the maximum
density value in Ωx,z to be ρx,z which satisfies

ρx,z ≤
N1x,z +N2x,z

2
ML

1
2γ
−1
.

Denote the maximum η value in Ωx,z to be EUx,z which satisfies

EUx,z ≤
2
√
Kγ

γ − 1
ρ
γ−1
2

x,z (3.31)

by (3.2). Denote the time at the upper vertex of Ωx,z as Tx,z which satisfies

1

Tx,z
≤ 2

z − x
·KcEU

γ+1
γ−1
x,z MU ,

by (3.9). And if further assume that m′′(x̄) < M∗ for any x̄ ∈ [x, z], then

(√
|a0|
a2

)
x,z
≤ Nx,z :=


√

2(γ−1)2

γ(γ+1)(3γ−1) M∗ EU

3γ−1
2(γ−1)
x,z M

3γ−5
3γ−1

L , 1 < γ ≤ 5
3 ,√

2(γ−1)2

γ(γ+1)(3γ−1) M∗EU

3γ−1
2(γ−1)
x,z M

3γ−5
3γ−1

U , γ ≥ 5
3 ,

(3.32)

where
(√

|a0|
a2

)
x,z

denotes the maximum value of
√
|a0|
a2

in Ωx,z when a0 ≥ 0.

If a0 is always negative in Ωx,z, define
(√

|a0|
a2

)
x,z

= 0.

When 1 < γ < 3, assuming initial density has uniform lower bound, by
a similar argument as for (3.28), we have in Ωx,z

a2 ≥ K7x,z(1 +K8x,zt)
−1 , (3.33)

where K7x,z > 0 and K8x,z > 0 depend on the initial bounds in (3.17)∼(3.18),
lower bound on initial density and initial bound Vx,z defined in (3.29) for
entropy.

Theorem 3.10. Assume the initial data u(x, 0) and τ(x, 0) are C1, |u(x, 0)|,
τ(x, 0), y(x, 0) and q(x, 0) are uniformly bounded above, τ(x, 0) is uniformly
away from zero, and S(x, 0) is C2 and local BV. Furthermore, suppose there
is a positive constant M∗ such that the initial entropy satisfies |m′′(x)| < M∗.
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Then, for system (1.1)∼(1.4), if there exists some interval (x, z) such that
the initial data satisfy

y(x, 0) ≤ −Nx,z(1 +Bx,z) , (3.34)

where Nx,z is defined in (3.32) and Bx,z satisfies

Bx,z(2 +Bx,z)

(1 +Bx,z)
>


(
Kc(γ+1)
2(γ−1) Nx,zTx,zMU

3(3−γ)
2(3γ−1) EU

3−γ
2(γ−1)
x,z

)−1

, γ ≥ 3 ,(
K7x,z

K8x,z
Nx,z ln(1 +K8x,zTx,z)

)−1
, 1 < γ < 3 ,

(3.35)
then |ux| and/or |τx| blow up in finite time. See Remarks 3.8, 3.9 and
Figure 2 for definitions of notations. Symmetric result holds in the backward
direction for q.

Remark 3.11. The right hand side of (3.35) only depends on the initial
data. For any given local BV initial entropy, condition (3.35) will be satisfied
when Bx,z is large enough, i.e. y(x, 0) is negative enough. This means that
singularity forms in finite time when the initial compression is strong enough
somewhere.

One sufficient condition on Bx,z such that (3.35) is satisfied is that

Bx,z >


(
Kc(γ+1)
2(γ−1) Nx,zTx,zMU

3(3−γ)
2(3γ−1) EU

3−γ
2(γ−1)
x,z

)−1

, γ ≥ 3 ,(
K7x,z

K8x,z
Nx,z ln(1 +K8x,zTx,z)

)−1
, 1 < γ < 3 ,

(3.36)

This result is consistent with Theorem 3.5. In fact, when the initial
entropy has finite total variation, Tx,∞ =∞ while Nx,∞, K7x,∞ and K8x,∞
are all finite, so Bx,∞ can be arbitrarily small. Hence, if y(x, 0) < −Nx,∞,
then blowup happens in finite time.

Proof. We only consider the solution in the domain of dependence Ωx,z,
and prove that singularity formation happens in Ωx,z. More precisely, we
will show that y goes to negative infinity along the forward characteristic
starting from the point (x, 0) before Tx,z. We still use y(t) to denote this
characteristic.

From now on, we restrict our consideration in Ωx,z. Then we can use all
bounds in Remark 3.9. By (3.13), (3.32) and (3.34), we know

∂+y(t) < 0 and y(t) ≤ −Nx,z(1 +Bx,z), for any 0 < t < Tx,z.
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Still by (3.32), when 0 < t < Tx,z,

a0 − a2
y2(t)

(1 +Bx,z)2
< 0 ,

so

∂+y(t) = a0 − a2 y
2(t) < −Bx,z(2 +Bx,z)

(1 +Bx,z)2
a2 y

2(t) < 0 .

Integrating it, we get

1

y(t)
≥ 1

y(0)
+
Bx,z(2 +Bx,z)

(1 +Bx,z)2

t

↗
∫
0

a2 dt . (3.37)

Hence the blowup happens when the right hand side of (3.37) equals to zero,
i.e. when

− 1

y(0)
=
Bx,z(2 +Bx,z)

(1 +Bx,z)2

t

↗
∫
0

a2 dt . (3.38)

Now to complete the proof of the Theorem 3.10, the only thing left to
show is that blowup happens before Tx,z. By (3.34) we only have to show
that

1

Nx,z
≤ Bx,z(2 +Bx,z)

(1 +Bx,z)

Tx,z

↗
∫
0

a2 dt . (3.39)

Finally, we prove (3.39) case by case.
Case when γ ≥ 3. By (3.31), in Ωx,z,

a2 ≥ Kc
γ+1

2(γ−1) MU

3(3−γ)
2(3γ−1) EU

3−γ
2(γ−1)
x,z .

Hence by (3.35), clearly (3.39) is satisfied.
Case when 1 < γ < 3. By (3.33), we know to prove (3.39), we only have

to show that

1

Nx,z
≤ Bx,z(2 +Bx,z)

(1 +Bx,z)

Tx,z

↗
∫
0

K7x,z(1 +K8x,zt)
−1 dt , (3.40)

which is clearly correct by (3.35).
Hence we complete the proof of this theorem.
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3.5 Further discussion

Finally we give an example to show the sharpness of the Theorem 3.5.
We consider a global smooth stationary solution

u = 0, m = m(x) and τ = τ(x)

which satisfies
px(x) = 0. (3.41)

Then we provide the profile of m(x), satisfiing all conditions in Theorem
3.5, by which we can get τ(x) using (3.41) and (3.4).

First, by (3.41) and (3.4),

−q(x) = y(x) = γ−1
γ(3γ−1)mxm

3(γ−3)
2(3γ−1) η

γ+1
2(γ−1)

+1
. (3.42)

We note that N is the best estimate we could have now for the upper bound
of √

a0
a2

=
√

2(γ−1)2

γ(γ+1)(3γ−1)

(
mmxx − 3γ+1

3γ−1 m
2
x

)
η

γ+1
2(γ−1)

+1
m
− 3(3−γ)

2(3γ−1) , (3.43)

by (3.22), when mmxx − 3γ+1
3γ−1 m

2
x ≥ 0.

Comparing (3.42) with (3.43), we see if

γ−1
γ(3γ−1) |mx| =

√
2(γ−1)2

γ(γ+1)(3γ−1)

(
mmxx − 3γ+1

3γ−1 m
2
x

)
which is equivalent to

6γ2+3γ+1
γ(3γ−1) m

2
x = 2mmxx

or
Sxx = 5γ+1

4cvγ(3γ−1)S
2
x , (3.44)

where S is the entropy satisfying (3.1), then either y(x) = −
√

a0(x)
a2(x) or

q(x) = −
√

a0(x)
a2(x) .

It is clear that we could find a positive solution S(x) of (3.44) in the
region x ∈ [1, 2], once we set S(1) to be a number large enough. Then
choose the function S(x) to be almost constant in either (−∞, 1) or (2,∞).
Finally we get τ(x) by (3.41) and (3.4). And it is easy to see that this
solution is a global smooth solution.

Now we already found a smooth stationary solution, satisfying either

y(x) = −
√

a0(x)
a2(x) or q(x) = −

√
a0(x)
a2(x) for each x ∈ [1, 2]. On the other hand,
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y(x), q(x) and
√

a0(x)
a2(x) are all almost zero in the set outside x ∈ (1−ε, 2+ε),

for a very small constant ε, by (3.42)∼(3.43) and mx is almost zero in that
set. In conclusion,

inf ( y, q ) ≈ − min
(x,t)∈R×R+

√
a0
a2
.

Till now, −N , provided by the initial data, is the best estimate for

−min(x,t)∈R×R+

√
a0
a2

. If one could not improve this estimate, then the con-

dition (3.25) provides a sharp condition, under which classical solution must
break down in finite time.

Finally, when the maximum oscillation of initial entropy approaches zero,
M∗ approaches zero, then N and Nx,z tend to zero. When m is constant,
N = 0 and Nx,z = 0. Hence, Theorems 3.5 and 3.10 for non-isentropic Euler
equations are consistent with Theorem 2.4 for p-system: when the initial
entropy oscillation is weak enough, classical solution must break down in
finite time even there are only weak initial compressions.
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